zoukankan      html  css  js  c++  java
  • POJ 2112.Optimal Milking (最大流)

    时间限制:2s

    空间限制:30M

    题意:

          有K台挤奶机(编号1~K),C头奶牛(编号K+1~K+C),给出各点之间距离。现在要让C头奶牛到挤奶机去挤奶,每台挤奶机只能处理M头奶牛,求使所走路程最远的奶牛的路程最短的方案。


    Solution:

                先Floyd求最短路,然后最大流二分答案ans。

                若奶牛与挤奶机之间的距离大于ans则不连边,否则连容量为1的边。源向挤奶机连容量M的边,奶牛向汇连容量1的边,用最大流判可行性。

    code

    /*
          最大流SAP
          邻接表
          思路:基本源于FF方法,给每个顶点设定层次标号,和允许弧。
          优化:
          1、当前弧优化(重要)。
          1、每找到以条增广路回退到断点(常数优化)。
          2、层次出现断层,无法得到新流(重要)。
          时间复杂度(m*n^2)
    */
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #define ms(a,b) memset(a,b,sizeof a)
    using namespace std;
    const int INF = 300;
    int G[INF][INF];
    struct node {
        int v, c, next;
    } edge[INF*INF*4];
    int  pHead[INF*INF], SS, ST, nCnt;
    //同时添加弧和反向边, 反向边初始容量为0
    void addEdge (int u, int v, int c) {
        edge[++nCnt].v = v; edge[nCnt].c = c, edge[nCnt].next = pHead[u]; pHead[u] = nCnt;
        edge[++nCnt].v = u; edge[nCnt].c = 0, edge[nCnt].next = pHead[v]; pHead[v] = nCnt;
    }
    int SAP (int pStart, int pEnd, int N) {
        //层次点的数量  点的层次   点if(G[i][j]<l) l=G[i][j];的允许弧     当前走过边的栈
        int numh[INF], h[INF], curEdge[INF], pre[INF];
        //当前找到的流, 累计的流量, 当前点, 断点, 中间变量
        int cur_flow, flow_ans = 0, u, neck, i, tmp;
        //清空层次数组,
        ms (h, 0); ms (numh, 0); ms (pre, -1);
        //将允许弧设为邻接表的任意if(G[i][j]<l) l=G[i][j];一条边
        for (i = 0; i <= N; i++) curEdge[i] = pHead[i];
        numh[0] = N;//初始全部点的层次为0
        u = pStart;//从源点开始
        //如果从源点能找到增广路
        while (h[pStart] <= N) {
            //找到增广路
            if (u == pEnd) {
                cur_flow = 1e9;
                //找到当前增广路中的最大流量, 更新断点
                for (i = pStart; i != pEnd; i = edge[curEdge[i]].v)
                    if (cur_flow > edge[curEdge[i]].c) neck = i, cur_flow = edge[curEdge[i]].c;
                //增加反向边的容量
                for (i = pStart; i != pEnd; i = edge[curEdge[i]].v) {
                    tmp = curEdge[i];
                    edge[tmp].c -= cur_flow, edge[tmp ^ 1].c += cur_flow;
                }
                flow_ans += cur_flow;//累计流量
                u = neck;//从断点开始找新的增广路
            }
            //找到一条允许弧
            for ( i = curEdge[u]; i != 0; i = edge[i].next)
                if (edge[i].c && h[u] == h[edge[i].v] + 1)     break;
            //继续DFS
            if (i != 0) {
                curEdge[u] = i, pre[edge[i].v] = u;
                u = edge[i].v;
            }
            //当前起点没有允许弧,从u找不到增广路
            else {
                //u所在的层次点减少一,且如果没有与当前点一个层次的点, 退出.
                if (0 == --numh[h[u]]) continue;
                //有与u相同层次的点, 更新u的层次 ,回到上一个点
                curEdge[u] = pHead[u];
                for (tmp = N, i = pHead[u]; i != 0; i = edge[i].next)
                    if (edge[i].c)  tmp = min (tmp, h[edge[i].v]);
                h[u] = tmp + 1;
                ++numh[h[u]];
                if (u != pStart) u = pre[u];
            }
        }
        return flow_ans;
    }
    int k, c, m, n;
    bool check (int tem) {
        nCnt = 1;
        SS = n + 1, ST = n + 2;
        memset (pHead, 0, sizeof pHead);
        for (int i = 1; i <= k; i++) {
            addEdge (i, ST, m);
            for (int j = k + 1; j <= k + c; j++)
                if (G[j][i] <= tem)
                    addEdge (j, i, 1);
        }
        for (int i = k + 1; i <= k + c; i++) addEdge (SS, i, 1);
        int ans = SAP (SS, ST, ST);
        if (ans == c) return 1;
        return 0;
    }
    int main() {
        /*
               建图,前向星存边,表头在pHead[],边计数 nCnt.
               SS,ST分别为源点和汇点
        */
        scanf ("%d %d %d", &k, &c, &m);
        n = k + c;
        int l = 0, r = 10000;
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= n; j++) {
                scanf ("%d", &G[i][j]);
                if (G[i][j]==0)
                    G[i][j] = 0x3f3f3f;
            }
        for (int  t = 1; t <= n; t++) {
            for (int i = 1; i <= n; i++)
                for (int j = 1; j <= n; j++)
                    if (G[i][j] > G[i][t] + G[t][j]) G[i][j] = G[i][t] + G[t][j];
        }
        int last = -1;
        while (l <= r) {
            int mid = (l + r) >> 1;
            if (check (mid) ) {
                last = mid;
                r = mid - 1;
            }
            else l = mid + 1;
        }
        printf ("%d", last);
        return 0;
    }
    View Code
  • 相关阅读:
    linux --- mysql --- max_allowed_packet
    idea 快捷键
    TypedArray和obtainStyledAttributes使用
    ubuntu中怎样添加或删除一个PPA源
    Ubuntu 14.04 用户安装 Cinnamon 2.2.0
    android-pulltorefresh源码解析(1)--PullToRefreshListView的使用
    Android菜单详解(四)——使用上下文菜单ContextMenu
    Android菜单详解(五)——使用XML生成菜单
    Android菜单详解(二)——创建并响应选项菜单
    Android菜单详解(三)——SubMenu和IconMenu
  • 原文地址:https://www.cnblogs.com/keam37/p/3969246.html
Copyright © 2011-2022 走看看