时间限制:0.25s
空间限制:4M
题意:
给定一个N*N的棋盘,一些格子被移除,在棋盘上放置一些1*2的骨牌,判定能否放满,并且输出任意方案。
Solution:
首先考虑对棋盘的一个格子黑白染色(实际上不需要),得到一个类似国际象棋棋盘的东西,一个骨牌能放置在相邻的一对黑白格子上
我们考虑对每一个黑格子,连一条到相邻白色格子的边,然后做二分图的最大匹配,判断是否是完备匹配,输出解即可。
思路比较简单直接,输出需要一些简单技巧和小处理。
code
#include <iostream> #include <cstring> #include <fstream> #include <cmath> #include <cstdio> using namespace std; const int INF = 1700; struct node { int u, v, next; } edge[100000]; int pHead[INF], vis[INF], pr[INF]; int dx[] = {0, 0, 1, -1}, dy[] = {1, -1, 0, 0}; int n, m, x, y, nCnt, an; int exPath (int x) { for (int k = pHead[x]; k != 0; k = edge[k].next) { int x = edge[k].u, y = edge[k].v; if (!vis[y]) { vis[y] = 1; if ( !pr[y] || exPath (pr[y]) ) return pr[y] = x; } } return 0; } void addEdge (int u, int v) { edge[++nCnt].u = u, edge[nCnt].v = v; edge[nCnt].next = pHead[u]; pHead[u] = nCnt; } int g[50][50]; int main() { //ofstream cout("out.txt"); cin >> n >> m; for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) g[i][j] = 1; for (int i = 1; i <= m; i++) { cin >> x >> y; g[x][y] = 0; } for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) { if (g[i][j]) for (int k = 0; k < 4; k++) { int x = i + dx[k], y = j + dy[k]; if (g[x][y]) addEdge ( (i - 1) *n + j, (x - 1) *n + y); } } for (int i = 1; i <= n * n; i++) { if (exPath (i) ) an++; memset (vis, 0, sizeof vis); } int t1 = 0, t2 = 0; int ans[2][INF]; for (int i = 1; i <= n * n; i++) { if (pr[i] && !vis[i]) { vis[i] = vis[pr[i]] = 1; if (abs (pr[i] - i) == n) ans[0][++t1] = min (i, pr[i]); else ans[1][++t2] = min (i, pr[i]); } } if (an == (n * n - m) ) { cout << "Yes" << endl; cout << t1 << endl; for (int i = 1; i <= t1; i++) { int l, r; if (ans[0][i] % n) l = ans[0][i] / n + 1, r = ans[0][i] % n; else l = ans[0][i] / n, r = n; cout << l << ' ' << r << endl; } cout << t2 << endl; for (int i = 1; i <= t2; i++) { int l, r; l = ans[1][i] / n + 1, r = ans[1][i] % n; cout << l << ' ' << r << endl; } } else cout << "No"; return 0; }