zoukankan      html  css  js  c++  java
  • zoj3329 One Person Game

    One Person Game

    Time Limit: 1 Second Memory Limit: 32768 KB Special Judge

    There is a very simple and interesting one-person game. You have 3 dice, namely Die1, Die2 and Die3. Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces. All the dice are fair dice, so the probability of rolling each value, 1 to K1, K2, K3 is exactly 1 / K1, 1 / K2 and 1 / K3. You have a counter, and the game is played as follow:

    1. Set the counter to 0 at first.
    2. Roll the 3 dice simultaneously. If the up-facing number of Die1 is a, the up-facing number of Die2 is b and the up-facing number of Die3 is c, set the counter to 0. Otherwise, add the counter by the total value of the 3 up-facing numbers.
    3. If the counter's number is still not greater than n, go to step 2. Otherwise the game is ended.

    Calculate the expectation of the number of times that you cast dice before the end of the game.

    Input

    There are multiple test cases. The first line of input is an integer T (0 < T <= 300) indicating the number of test cases. Then T test cases follow. Each test case is a line contains 7 non-negative integers n, K1, K2, K3, a, b, c (0 <= n <= 500, 1 < K1, K2, K3 <= 6, 1 <= a <= K1, 1 <= b <= K2, 1 <= c <= K3).

    Output

    For each test case, output the answer in a single line. A relative error of 1e-8 will be accepted.

    Sample Input

    2
    0 2 2 2 1 1 1
    0 6 6 6 1 1 1
    

    Sample Output

    1.142857142857143
    1.004651162790698
    
    我们可以推出公式dp[i]=sum{pk*dp[i+k]}+p0*dp[0]+1,dp[i]表示当前分数是i是时的到游戏结束的期望,那么dp[0],就是要求的,其实,我们可以发现一个归律,求期望都是从后住前推的,比如,这里,是由i+k推到i的,求概率的时候是刚好相反的,但我们发现求出的这个式子,是个环形的,所以要变形,因为,每一个都是和dp[0]相关的,我们可以设,dp[i]=a[i]*dp[0]+b[i],那么dp[0]不就是,b[i]/(1-a[i])了么,我们,把这个式子代入上式就可以得到,dp[i]=sum{pk*a[i+k]}+p0,b[i]=sum{pk*b[i+k]}+1,这样,就可以马上求结果来了!
    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    using namespace std;
    #define MAXN 550
    double pa[MAXN],pb[MAXN],dp[MAXN],p[MAXN];
    int main()
    {
        int tcase,i,j,k,n,a,b,c,k1,k2,k3;
        double p0;
        scanf("%d",&tcase);
        while(tcase--)
        {
            scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);
            p0=1.0/k1/k2/k3;
            memset(pa,0,sizeof(pa));
            memset(pb,0,sizeof(pb));
            memset(dp,0,sizeof(dp));
            memset(p,0,sizeof(p));
            for(i=1;i<=k1;i++)
                for(j=1;j<=k2;j++)
                    for(k=1;k<=k3;k++)
                    if(i!=a||j!=b||k!=c)//不同时相等
                        p[i+j+k]+=p0;
            int temp=k1+k2+k3;
            for(i=n;i>=0;i--)
            {
                pa[i]=p0;
                pb[i]=1;
                for(k=1;k<=temp;k++)
                {
                    pa[i]+=pa[i+k]*p[k];
                    pb[i]+=pb[i+k]*p[k];
                }
            }
            printf("%.15f
    ",pb[0]/(1.0-pa[0]));
        }
        return 0;
    }
    


  • 相关阅读:
    Java学习笔记_180706_接口实现、类继承、多态、转型
    poj 1279 求半平面交的 面积(推荐)
    半平面交 模板 poj 3335 poj 3130 poj 1474 判断半平面交是否为空集
    高斯消元 zoj 3645 poj 1222/XOR消元
    向量旋转专题
    hdu 1524 A Chess Game SG函数(有向无环图-拓扑图)博弈 (二维) + dfs(模板)
    HDOJ1079&POJ1082&ZOJ1024 Calendar Game [找规律博弈]
    转 博弈类题目小结(hdu,poj,zoj)
    poj 3080 get_next + kmp + 字符数组做函数参数 + 数组下标从1 开始
    poj Area 1265 求面积+ 多边形边上的点的个数+ 多边形内点个数
  • 原文地址:https://www.cnblogs.com/keanuyaoo/p/3270927.html
Copyright © 2011-2022 走看看