zoukankan      html  css  js  c++  java
  • hdu 1159 Common Subsequence(LCS最长公共子序列)

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 18387    Accepted Submission(s): 7769

    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
     
    Sample Input
    abcfbc abfcab programming contest abcd mnp
     
    Sample Output
    4 2 0
     
    Source
     
    Recommend
    Ignatius
      题意:
    给你两个字符串。要你找它们的最长公共子串。
    思路:
    dp[i][j]表示s1长度为i的前缀和s2长度为j的前缀的最长公共子序列的长度。
    考虑 s1的第i+1个字符位置要么匹配。要么不匹配。匹配的话只能和前j个位置匹配。
    如果s1[i+1]==s2[j]的话
    那么dp[i+1][j]=dp[i][j-1]+1很显然成立。
    如果s1[i+1]!=s2[j]的话
    i+1只能和前s2 的前j-1个位置匹配。
    dp[i+1][j]=dp[i+1][j-1]
    不匹配前s1的i+1个位置的话。
    dp[i+1][j]=dp[i][j]。
    那么dp[i+1][j]=max(dp[i][j],dp[i+1][j-1])
    这样就把s1的第i+1个位置确定了。
    详细见代码:
    #include <iostream>
    #include<stdio.h>
    #include<string.h>
    using namespace std;
    const int maxn=1010;
    int dp[maxn][maxn];
    char s1[maxn],s2[maxn];
    int main()
    {
        int i,j,len1,len2;
    
        while(~scanf("%s%s",s1+1,s2+1))
        {
            len1=strlen(s1+1);
            len2=strlen(s2+1);
            memset(dp[0],0,sizeof dp[0]);
            for(i=1;i<=len1;i++)
            {
                for(j=1;j<=len2;j++)
                {
                    if(s1[i]==s2[j])
                        dp[i][j]=dp[i-1][j-1]+1;
                    else
                        dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
                }
            }
            printf("%d
    ",dp[len1][len2]);
        }
        return 0;
    }
    



  • 相关阅读:
    Android 懒加载简单介绍
    Android 使用RxJava实现一个发布/订阅事件总线
    Android 第三方库RxLifecycle使用
    Android 使用Retrofit2.0+OkHttp3.0实现缓存处理+Cookie持久化第三方库
    代码雨
    我的第一个博客(My first blog)
    merge法
    如何使用git将remote master上的内容merge 到自己的开发分支上  &  以及将自己分支的内容merge到remote master上...
    git 解决冲突
    Mac安装和破解激活Charles
  • 原文地址:https://www.cnblogs.com/keanuyaoo/p/3343317.html
Copyright © 2011-2022 走看看