zoukankan      html  css  js  c++  java
  • hdu 1159 Common Subsequence(LCS最长公共子序列)

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 18387    Accepted Submission(s): 7769

    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
     
    Sample Input
    abcfbc abfcab programming contest abcd mnp
     
    Sample Output
    4 2 0
     
    Source
     
    Recommend
    Ignatius
      题意:
    给你两个字符串。要你找它们的最长公共子串。
    思路:
    dp[i][j]表示s1长度为i的前缀和s2长度为j的前缀的最长公共子序列的长度。
    考虑 s1的第i+1个字符位置要么匹配。要么不匹配。匹配的话只能和前j个位置匹配。
    如果s1[i+1]==s2[j]的话
    那么dp[i+1][j]=dp[i][j-1]+1很显然成立。
    如果s1[i+1]!=s2[j]的话
    i+1只能和前s2 的前j-1个位置匹配。
    dp[i+1][j]=dp[i+1][j-1]
    不匹配前s1的i+1个位置的话。
    dp[i+1][j]=dp[i][j]。
    那么dp[i+1][j]=max(dp[i][j],dp[i+1][j-1])
    这样就把s1的第i+1个位置确定了。
    详细见代码:
    #include <iostream>
    #include<stdio.h>
    #include<string.h>
    using namespace std;
    const int maxn=1010;
    int dp[maxn][maxn];
    char s1[maxn],s2[maxn];
    int main()
    {
        int i,j,len1,len2;
    
        while(~scanf("%s%s",s1+1,s2+1))
        {
            len1=strlen(s1+1);
            len2=strlen(s2+1);
            memset(dp[0],0,sizeof dp[0]);
            for(i=1;i<=len1;i++)
            {
                for(j=1;j<=len2;j++)
                {
                    if(s1[i]==s2[j])
                        dp[i][j]=dp[i-1][j-1]+1;
                    else
                        dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
                }
            }
            printf("%d
    ",dp[len1][len2]);
        }
        return 0;
    }
    



  • 相关阅读:
    POJ 3616 Milking Time(简单区间DP)
    AizuOJ ALDS1_7_A Rooted Trees(有根树的表达)
    jQuery中 attr() 和 prop() 的区别
    前后端交互模式
    快速排序
    冒泡排序实现
    Vue 组件间进行通信
    JavaScript 数组常用方法
    如何将内网映射到公网?
    javax.mail.AuthenticationFailedException: 535 Login Fail. Please enter your authorization code to login. More information in
  • 原文地址:https://www.cnblogs.com/keanuyaoo/p/3343317.html
Copyright © 2011-2022 走看看