1.前言
Redis是一个key/value存储系统,它的数据都是缓存在内存中的,所以效率很高。这几天用到了redis,所以学习了一些关于redis的基本知识,现在记录出来,为以后查阅方便。
2.安装
参考文章:http://my.oschina.net/u/273598/blog/100809
Redis的下载地址:http://redis.io/download 有windows版和linux版,下面是windows下的安装过程:
windows版本的Redis安装文件解压之后,有一下几个文件:
redis-benchmark.exe:性能测试,用于模拟同时由N个客户端发送M个SETs/GETs查询
redis-check-aof.exe:更新日志检查
redis-check-dump.exe:本地数据库检查
redis-server.exe:redis的服务程序
2.1增加redis.conf文件
在解压好的redis的安装文件到某目录下,此时需要在redis的根目录自己创建一个redis的配置文件——redis.conf,这个文件的内容如下,只要将这些内容复制到创建的redis.conf文件中就行。
# Redis configuration file example # By default Redis does not run as a daemon. Use 'yes' if you need it. # Note that Redis will write a pid file in /var/run/redis.pid when daemonized. daemonize no # When run as a daemon, Redis write a pid file in /var/run/redis.pid by default. # You can specify a custom pid file location here. pidfile /var/run/redis.pid # Accept connections on the specified port, default is 6379 port 6379 # If you want you can bind a single interface, if the bind option is not # specified all the interfaces will listen for connections. # # bind 127.0.0.1 # Close the connection after a client is idle for N seconds (0 to disable) timeout 300 # Set server verbosity to 'debug' # it can be one of: # debug (a lot of information, useful for development/testing) # notice (moderately verbose, what you want in production probably) # warning (only very important / critical messages are logged) loglevel debug # Specify the log file name. Also 'stdout' can be used to force # the demon to log on the standard output. Note that if you use standard # output for logging but daemonize, logs will be sent to /dev/null logfile stdout # Set the number of databases. The default database is DB 0, you can select # a different one on a per-connection basis using SELECT <dbid> where # dbid is a number between 0 and 'databases'-1 databases 16 ################################ SNAPSHOTTING ################################# # # Save the DB on disk: # # save <seconds> <changes> # # Will save the DB if both the given number of seconds and the given # number of write operations against the DB occurred. # # In the example below the behaviour will be to save: # after 900 sec (15 min) if at least 1 key changed # after 300 sec (5 min) if at least 10 keys changed # after 60 sec if at least 10000 keys changed save 900 1 save 300 10 save 60 10000 # Compress string objects using LZF when dump .rdb databases? # For default that's set to 'yes' as it's almost always a win. # If you want to save some CPU in the saving child set it to 'no' but # the dataset will likely be bigger if you have compressible values or keys. rdbcompression yes # The filename where to dump the DB dbfilename dump.rdb # For default save/load DB in/from the working directory # Note that you must specify a directory not a file name. dir ./ ################################# REPLICATION ################################# # Master-Slave replication. Use slaveof to make a Redis instance a copy of # another Redis server. Note that the configuration is local to the slave # so for example it is possible to configure the slave to save the DB with a # different interval, or to listen to another port, and so on. # # slaveof <masterip> <masterport> # If the master is password protected (using the "requirepass" configuration # directive below) it is possible to tell the slave to authenticate before # starting the replication synchronization process, otherwise the master will # refuse the slave request. # # masterauth <master-password> ################################## SECURITY ################################### # Require clients to issue AUTH <PASSWORD> before processing any other # commands. This might be useful in environments in which you do not trust # others with access to the host running redis-server. # # This should stay commented out for backward compatibility and because most # people do not need auth (e.g. they run their own servers). # # requirepass foobared ################################### LIMITS #################################### # Set the max number of connected clients at the same time. By default there # is no limit, and it's up to the number of file descriptors the Redis process # is able to open. The special value '0' means no limts. # Once the limit is reached Redis will close all the new connections sending # an error 'max number of clients reached'. # # maxclients 128 # Don't use more memory than the specified amount of bytes. # When the memory limit is reached Redis will try to remove keys with an # EXPIRE set. It will try to start freeing keys that are going to expire # in little time and preserve keys with a longer time to live. # Redis will also try to remove objects from free lists if possible. # # If all this fails, Redis will start to reply with errors to commands # that will use more memory, like SET, LPUSH, and so on, and will continue # to reply to most read-only commands like GET. # # WARNING: maxmemory can be a good idea mainly if you want to use Redis as a # 'state' server or cache, not as a real DB. When Redis is used as a real # database the memory usage will grow over the weeks, it will be obvious if # it is going to use too much memory in the long run, and you'll have the time # to upgrade. With maxmemory after the limit is reached you'll start to get # errors for write operations, and this may even lead to DB inconsistency. # # maxmemory <bytes> ############################## APPEND ONLY MODE ############################### # By default Redis asynchronously dumps the dataset on disk. If you can live # with the idea that the latest records will be lost if something like a crash # happens this is the preferred way to run Redis. If instead you care a lot # about your data and don't want to that a single record can get lost you should # enable the append only mode: when this mode is enabled Redis will append # every write operation received in the file appendonly.log. This file will # be read on startup in order to rebuild the full dataset in memory. # # Note that you can have both the async dumps and the append only file if you # like (you have to comment the "save" statements above to disable the dumps). # Still if append only mode is enabled Redis will load the data from the # log file at startup ignoring the dump.rdb file. # # The name of the append only file is "appendonly.log" # # IMPORTANT: Check the BGREWRITEAOF to check how to rewrite the append # log file in background when it gets too big. appendonly no # The fsync() call tells the Operating System to actually write data on disk # instead to wait for more data in the output buffer. Some OS will really flush # data on disk, some other OS will just try to do it ASAP. # # Redis supports three different modes: # # no: don't fsync, just let the OS flush the data when it wants. Faster. # always: fsync after every write to the append only log . Slow, Safest. # everysec: fsync only if one second passed since the last fsync. Compromise. # # The default is "always" that's the safer of the options. It's up to you to # understand if you can relax this to "everysec" that will fsync every second # or to "no" that will let the operating system flush the output buffer when # it want, for better performances (but if you can live with the idea of # some data loss consider the default persistence mode that's snapshotting). appendfsync always # appendfsync everysec # appendfsync no ############################### ADVANCED CONFIG ############################### # Glue small output buffers together in order to send small replies in a # single TCP packet. Uses a bit more CPU but most of the times it is a win # in terms of number of queries per second. Use 'yes' if unsure. glueoutputbuf yes # Use object sharing. Can save a lot of memory if you have many common # string in your dataset, but performs lookups against the shared objects # pool so it uses more CPU and can be a bit slower. Usually it's a good # idea. # # When object sharing is enabled (shareobjects yes) you can use # shareobjectspoolsize to control the size of the pool used in order to try # object sharing. A bigger pool size will lead to better sharing capabilities. # In general you want this value to be at least the double of the number of # very common strings you have in your dataset. # # WARNING: object sharing is experimental, don't enable this feature # in production before of Redis 1.0-stable. Still please try this feature in # your development environment so that we can test it better. # shareobjects no # shareobjectspoolsize 1024
2.2启动redis
首先在cmd中进入redis的根目录下,然后输入命令:
redis-server.exe redis.conf
这个是启动了redis的服务,如果要使用redis,这个服务要一直保持开启状态,即这个cmd窗口一直开着。关闭则redis服务也关闭了。
新建另一个cmd,进入redis根目录,启动客户端:
redis-cli.exe -h 127.0.0.1 -p 6379
-h 127.0.0.1 是redis数据库服务所在服务器ip,如果是本地,则写127.0.0.1;-p 6379是redis占用端口,默认是6379。
此时就可以使用redis命令,设置key/value值,并可以通过key获取value了:
3.Java客户端
这里介绍如何使用java编程来操作redis数据库。
需要先下载一个java操作redis的驱动包——jedis-2.1.0.jar
一个最基本的的代码如下:
import redis.clients.jedis.Jedis; public class MyRedis { public static void main(String args[]) { // 连接redis服务 Jedis jedis = new Jedis("127.0.0.1", 6379); // 密码验证-如果你没有设置redis密码可不验证即可使用相关命令 jedis.auth("123456"); // 简单的key-value 存储 jedis.set("key1", "value1"); System.out.println(jedis.get("key1")); } }
附:
下面内容为转载自http://javacrazyer.iteye.com/blog/1840161
一个更加详细的java操作redis的博客请移步: http://javacrazyer.iteye.com/blog/1840161 下面将这篇博客转载过来,方便以后查阅:
package com.wujintao.redis; import java.util.Date; import java.util.HashMap; import java.util.Iterator; import java.util.List; import java.util.Map; import java.util.Set; import org.junit.Test; import redis.clients.jedis.Jedis; import redis.clients.jedis.Pipeline; import redis.clients.jedis.SortingParams; import com.wujintao.redis.util.RedisUtil; public class TestCase { /** * 在不同的线程中使用相同的Jedis实例会发生奇怪的错误。但是创建太多的实现也不好因为这意味着会建立很多sokcet连接, * 也会导致奇怪的错误发生。单一Jedis实例不是线程安全的。为了避免这些问题,可以使用JedisPool, * JedisPool是一个线程安全的网络连接池。可以用JedisPool创建一些可靠Jedis实例,可以从池中拿到Jedis的实例。 * 这种方式可以解决那些问题并且会实现高效的性能 */ public static void main(String[] args) { // ...when closing your application: RedisUtil.getPool().destroy(); } public static void Hello() { Jedis jedis = RedisUtil.getJedis(); try { // 向key-->name中放入了value-->minxr jedis.set("name", "minxr"); String ss = jedis.get("name"); System.out.println(ss); // 很直观,类似map 将jintao append到已经有的value之后 jedis.append("name", "jintao"); ss = jedis.get("name"); System.out.println(ss); // 2、直接覆盖原来的数据 jedis.set("name", "jintao"); System.out.println(jedis.get("jintao")); // 删除key对应的记录 jedis.del("name"); System.out.println(jedis.get("name"));// 执行结果:null /** * mset相当于 jedis.set("name","minxr"); jedis.set("jarorwar","aaa"); */ jedis.mset("name", "minxr", "jarorwar", "aaa"); System.out.println(jedis.mget("name", "jarorwar")); } catch (Exception e) { e.printStackTrace(); } finally { RedisUtil.getPool().returnResource(jedis); } } private void testKey() { Jedis jedis = RedisUtil.getJedis(); System.out.println("=============key=========================="); // 清空数据 System.out.println(jedis.flushDB()); System.out.println(jedis.echo("foo")); // 判断key否存在 System.out.println(jedis.exists("foo")); jedis.set("key", "values"); System.out.println(jedis.exists("key")); } public static void testString() { System.out.println("==String=="); Jedis jedis = RedisUtil.getJedis(); try { // String jedis.set("key", "Hello World!"); String value = jedis.get("key"); System.out.println(value); } catch (Exception e) { e.printStackTrace(); } finally { RedisUtil.getPool().returnResource(jedis); } System.out.println("=============String=========================="); // 清空数据 System.out.println(jedis.flushDB()); // 存储数据 jedis.set("foo", "bar"); System.out.println(jedis.get("foo")); // 若key不存在,则存储 jedis.setnx("foo", "foo not exits"); System.out.println(jedis.get("foo")); // 覆盖数据 jedis.set("foo", "foo update"); System.out.println(jedis.get("foo")); // 追加数据 jedis.append("foo", " hello, world"); System.out.println(jedis.get("foo")); // 设置key的有效期,并存储数据 jedis.setex("foo", 2, "foo not exits"); System.out.println(jedis.get("foo")); try { Thread.sleep(3000); } catch (InterruptedException e) { } System.out.println(jedis.get("foo")); // 获取并更改数据 jedis.set("foo", "foo update"); System.out.println(jedis.getSet("foo", "foo modify")); // 截取value的值 System.out.println(jedis.getrange("foo", 1, 3)); System.out.println(jedis.mset("mset1", "mvalue1", "mset2", "mvalue2", "mset3", "mvalue3", "mset4", "mvalue4")); System.out.println(jedis.mget("mset1", "mset2", "mset3", "mset4")); System.out.println(jedis.del(new String[] { "foo", "foo1", "foo3" })); } public static void testList() { System.out.println("==List=="); Jedis jedis = RedisUtil.getJedis(); try { // 开始前,先移除所有的内容 jedis.del("messages"); jedis.rpush("messages", "Hello how are you?"); jedis.rpush("messages", "Fine thanks. I'm having fun with redis."); jedis.rpush("messages", "I should look into this NOSQL thing ASAP"); // 再取出所有数据jedis.lrange是按范围取出, // 第一个是key,第二个是起始位置,第三个是结束位置,jedis.llen获取长度 -1表示取得所有 List<String> values = jedis.lrange("messages", 0, -1); System.out.println(values); } catch (Exception e) { e.printStackTrace(); } finally { RedisUtil.getPool().returnResource(jedis); } // 清空数据 System.out.println(jedis.flushDB()); // 添加数据 jedis.lpush("lists", "vector"); jedis.lpush("lists", "ArrayList"); jedis.lpush("lists", "LinkedList"); // 数组长度 System.out.println(jedis.llen("lists")); // 排序 System.out.println(jedis.sort("lists")); // 字串 System.out.println(jedis.lrange("lists", 0, 3)); // 修改列表中单个值 jedis.lset("lists", 0, "hello list!"); // 获取列表指定下标的值 System.out.println(jedis.lindex("lists", 1)); // 删除列表指定下标的值 System.out.println(jedis.lrem("lists", 1, "vector")); // 删除区间以外的数据 System.out.println(jedis.ltrim("lists", 0, 1)); // 列表出栈 System.out.println(jedis.lpop("lists")); // 整个列表值 System.out.println(jedis.lrange("lists", 0, -1)); } public static void testSet() { System.out.println("==Set=="); Jedis jedis = RedisUtil.getJedis(); try { jedis.sadd("myset", "1"); jedis.sadd("myset", "2"); jedis.sadd("myset", "3"); jedis.sadd("myset", "4"); Set<String> setValues = jedis.smembers("myset"); System.out.println(setValues); // 移除noname jedis.srem("myset", "4"); System.out.println(jedis.smembers("myset"));// 获取所有加入的value System.out.println(jedis.sismember("myset", "4"));// 判断 minxr // 是否是sname集合的元素 System.out.println(jedis.scard("sname"));// 返回集合的元素个数 } catch (Exception e) { e.printStackTrace(); } finally { RedisUtil.getPool().returnResource(jedis); } // 清空数据 System.out.println(jedis.flushDB()); // 添加数据 jedis.sadd("sets", "HashSet"); jedis.sadd("sets", "SortedSet"); jedis.sadd("sets", "TreeSet"); // 判断value是否在列表中 System.out.println(jedis.sismember("sets", "TreeSet")); ; // 整个列表值 System.out.println(jedis.smembers("sets")); // 删除指定元素 System.out.println(jedis.srem("sets", "SortedSet")); // 出栈 System.out.println(jedis.spop("sets")); System.out.println(jedis.smembers("sets")); // jedis.sadd("sets1", "HashSet1"); jedis.sadd("sets1", "SortedSet1"); jedis.sadd("sets1", "TreeSet"); jedis.sadd("sets2", "HashSet2"); jedis.sadd("sets2", "SortedSet1"); jedis.sadd("sets2", "TreeSet1"); // 交集 System.out.println(jedis.sinter("sets1", "sets2")); // 并集 System.out.println(jedis.sunion("sets1", "sets2")); // 差集 System.out.println(jedis.sdiff("sets1", "sets2")); } public static void sortedSet() { System.out.println("==SoretedSet=="); Jedis jedis = RedisUtil.getJedis(); try { jedis.zadd("hackers", 1940, "Alan Kay"); jedis.zadd("hackers", 1953, "Richard Stallman"); jedis.zadd("hackers", 1965, "Yukihiro Matsumoto"); jedis.zadd("hackers", 1916, "Claude Shannon"); jedis.zadd("hackers", 1969, "Linus Torvalds"); jedis.zadd("hackers", 1912, "Alan Turing"); Set<String> setValues = jedis.zrange("hackers", 0, -1); System.out.println(setValues); Set<String> setValues2 = jedis.zrevrange("hackers", 0, -1); System.out.println(setValues2); } catch (Exception e) { e.printStackTrace(); } finally { RedisUtil.getPool().returnResource(jedis); } // 清空数据 System.out.println(jedis.flushDB()); // 添加数据 jedis.zadd("zset", 10.1, "hello"); jedis.zadd("zset", 10.0, ":"); jedis.zadd("zset", 9.0, "zset"); jedis.zadd("zset", 11.0, "zset!"); // 元素个数 System.out.println(jedis.zcard("zset")); // 元素下标 System.out.println(jedis.zscore("zset", "zset")); // 集合子集 System.out.println(jedis.zrange("zset", 0, -1)); // 删除元素 System.out.println(jedis.zrem("zset", "zset!")); System.out.println(jedis.zcount("zset", 9.5, 10.5)); // 整个集合值 System.out.println(jedis.zrange("zset", 0, -1)); } public static void testHsh() { System.out.println("==Hash=="); Jedis jedis = RedisUtil.getJedis(); try { Map<String, String> pairs = new HashMap<String, String>(); pairs.put("name", "Akshi"); pairs.put("age", "2"); pairs.put("sex", "Female"); jedis.hmset("kid", pairs); List<String> name = jedis.hmget("kid", "name");// 结果是个泛型的LIST // jedis.hdel("kid","age"); //删除map中的某个键值 System.out.println(jedis.hmget("kid", "pwd")); // 因为删除了,所以返回的是null System.out.println(jedis.hlen("kid")); // 返回key为user的键中存放的值的个数 System.out.println(jedis.exists("kid"));// 是否存在key为user的记录 System.out.println(jedis.hkeys("kid"));// 返回map对象中的所有key System.out.println(jedis.hvals("kid"));// 返回map对象中的所有value Iterator<String> iter = jedis.hkeys("kid").iterator(); while (iter.hasNext()) { String key = iter.next(); System.out.println(key + ":" + jedis.hmget("kid", key)); } List<String> values = jedis.lrange("messages", 0, -1); values = jedis.hmget("kid", new String[] { "name", "age", "sex" }); System.out.println(values); Set<String> setValues = jedis.zrange("hackers", 0, -1); setValues = jedis.hkeys("kid"); System.out.println(setValues); values = jedis.hvals("kid"); System.out.println(values); pairs = jedis.hgetAll("kid"); System.out.println(pairs); } catch (Exception e) { e.printStackTrace(); } finally { RedisUtil.getPool().returnResource(jedis); } // 清空数据 System.out.println(jedis.flushDB()); // 添加数据 jedis.hset("hashs", "entryKey", "entryValue"); jedis.hset("hashs", "entryKey1", "entryValue1"); jedis.hset("hashs", "entryKey2", "entryValue2"); // 判断某个值是否存在 System.out.println(jedis.hexists("hashs", "entryKey")); // 获取指定的值 System.out.println(jedis.hget("hashs", "entryKey")); // 批量获取指定的值 System.out.println(jedis.hmget("hashs", "entryKey", "entryKey1")); // 删除指定的值 System.out.println(jedis.hdel("hashs", "entryKey")); // 为key中的域 field 的值加上增量 increment System.out.println(jedis.hincrBy("hashs", "entryKey", 123l)); // 获取所有的keys System.out.println(jedis.hkeys("hashs")); // 获取所有的values System.out.println(jedis.hvals("hashs")); } public static void testOther() throws InterruptedException { Jedis jedis = RedisUtil.getJedis(); try { // keys中传入的可以用通配符 System.out.println(jedis.keys("*")); // 返回当前库中所有的key [sose, sanme, // name, jarorwar, foo, // sname, java framework, // user, braand] System.out.println(jedis.keys("*name"));// 返回的sname [sname, name] System.out.println(jedis.del("sanmdde"));// 删除key为sanmdde的对象 删除成功返回1 // 删除失败(或者不存在)返回 0 System.out.println(jedis.ttl("sname"));// 返回给定key的有效时间,如果是-1则表示永远有效 jedis.setex("timekey", 10, "min");// 通过此方法,可以指定key的存活(有效时间) 时间为秒 Thread.sleep(5000);// 睡眠5秒后,剩余时间将为<=5 System.out.println(jedis.ttl("timekey")); // 输出结果为5 jedis.setex("timekey", 1, "min"); // 设为1后,下面再看剩余时间就是1了 System.out.println(jedis.ttl("timekey")); // 输出结果为1 System.out.println(jedis.exists("key"));// 检查key是否存在 System.out.println(jedis.rename("timekey", "time")); System.out.println(jedis.get("timekey"));// 因为移除,返回为null System.out.println(jedis.get("time")); // 因为将timekey 重命名为time // 所以可以取得值 min // jedis 排序 // 注意,此处的rpush和lpush是List的操作。是一个双向链表(但从表现来看的) jedis.del("a");// 先清除数据,再加入数据进行测试 jedis.rpush("a", "1"); jedis.lpush("a", "6"); jedis.lpush("a", "3"); jedis.lpush("a", "9"); System.out.println(jedis.lrange("a", 0, -1));// [9, 3, 6, 1] System.out.println(jedis.sort("a")); // [1, 3, 6, 9] //输入排序后结果 System.out.println(jedis.lrange("a", 0, -1)); } catch (Exception e) { e.printStackTrace(); } finally { RedisUtil.getPool().returnResource(jedis); } } @org.junit.Test public void testUnUsePipeline() { long start = new Date().getTime(); Jedis jedis = RedisUtil.getJedis(); for (int i = 0; i < 10000; i++) { jedis.set("age1" + i, i + ""); jedis.get("age1" + i);// 每个操作都发送请求给redis-server } long end = new Date().getTime(); System.out.println("unuse pipeline cost:" + (end - start) + "ms"); RedisUtil.getPool().returnResource(jedis); } @org.junit.Test /** * 参考:http://blog.csdn.net/freebird_lb/article/details/7778919 */ public void testUsePipeline() { long start = new Date().getTime(); Jedis jedis = RedisUtil.getJedis(); jedis.flushDB(); Pipeline p = jedis.pipelined(); for (int i = 0; i < 10000; i++) { p.set("age2" + i, i + ""); System.out.println(p.get("age2" + i)); } p.sync();// 这段代码获取所有的response long end = new Date().getTime(); System.out.println("use pipeline cost:" + (end - start) + "ms"); RedisUtil.getPool().returnResource(jedis); } @org.junit.Test /** * 时间复杂度: O(N+M*log(M)), N 为要排序的列表或集合内的元素数量, M 为要返回的元素数量。 如果只是使用 SORT 命令的 GET 选项获取数据而没有进行排序,时间复杂度 O(N)。 */ public void testSort1() { // 排序默认以数字作为对象,值被解释为双精度浮点数,然后进行比较 Jedis redis = RedisUtil.getJedis(); // 一般SORT用法 最简单的SORT使用方法是SORT key。 redis.lpush("mylist", "1"); redis.lpush("mylist", "4"); redis.lpush("mylist", "6"); redis.lpush("mylist", "3"); redis.lpush("mylist", "0"); // List<String> list = redis.sort("sort");// 默认是升序 SortingParams sortingParameters = new SortingParams(); sortingParameters.desc(); // sortingParameters.alpha();//当数据集中保存的是字符串值时,你可以用 ALPHA // 修饰符(modifier)进行排序。 sortingParameters.limit(0, 2);// 可用于分页查询 List<String> list = redis.sort("mylist", sortingParameters);// 默认是升序 for (int i = 0; i < list.size(); i++) { System.out.println(list.get(i)); } redis.flushDB(); RedisUtil.closeJedis(redis); } @org.junit.Test /** * sort list * LIST结合hash的排序 */ public void testSort2() { Jedis jedis = RedisUtil.getJedis(); jedis.del("user:66", "user:55", "user:33", "user:22", "user:11", "userlist"); jedis.lpush("userlist", "33"); jedis.lpush("userlist", "22"); jedis.lpush("userlist", "55"); jedis.lpush("userlist", "11"); jedis.hset("user:66", "name", "66"); jedis.hset("user:55", "name", "55"); jedis.hset("user:33", "name", "33"); jedis.hset("user:22", "name", "79"); jedis.hset("user:11", "name", "24"); jedis.hset("user:11", "add", "beijing"); jedis.hset("user:22", "add", "shanghai"); jedis.hset("user:33", "add", "guangzhou"); jedis.hset("user:55", "add", "chongqing"); jedis.hset("user:66", "add", "xi'an"); SortingParams sortingParameters = new SortingParams(); // 符号 "->" 用于分割哈希表的键名(key name)和索引域(hash field),格式为 "key->field" 。 sortingParameters.get("user:*->name"); sortingParameters.get("user:*->add"); // sortingParameters.by("user:*->name"); // sortingParameters.get("#"); List<String> result = jedis.sort("userlist", sortingParameters); for (String item : result) { System.out.println("item...." + item); } /** * 对应的redis客户端命令是:sort ml get user*->name sort ml get user:*->name get * user:*->add */ } @org.junit.Test /** * sort set * SET结合String的排序 */ public void testSort3() { Jedis jedis = RedisUtil.getJedis(); jedis.del("tom:friend:list", "score:uid:123", "score:uid:456", "score:uid:789", "score:uid:101", "uid:123", "uid:456", "uid:789", "uid:101"); jedis.sadd("tom:friend:list", "123"); // tom的好友列表 jedis.sadd("tom:friend:list", "456"); jedis.sadd("tom:friend:list", "789"); jedis.sadd("tom:friend:list", "101"); jedis.set("score:uid:123", "1000"); // 好友对应的成绩 jedis.set("score:uid:456", "6000"); jedis.set("score:uid:789", "100"); jedis.set("score:uid:101", "5999"); jedis.set("uid:123", "{'uid':123,'name':'lucy'}"); // 好友的详细信息 jedis.set("uid:456", "{'uid':456,'name':'jack'}"); jedis.set("uid:789", "{'uid':789,'name':'jay'}"); jedis.set("uid:101", "{'uid':101,'name':'jolin'}"); SortingParams sortingParameters = new SortingParams(); sortingParameters.desc(); // sortingParameters.limit(0, 2); // 注意GET操作是有序的,GET user_name_* GET user_password_* // 和 GET user_password_* GET user_name_*返回的结果位置不同 sortingParameters.get("#");// GET 还有一个特殊的规则—— "GET #" // ,用于获取被排序对象(我们这里的例子是 user_id )的当前元素。 sortingParameters.get("uid:*"); sortingParameters.get("score:uid:*"); sortingParameters.by("score:uid:*"); // 对应的redis 命令是./redis-cli sort tom:friend:list by score:uid:* get # get // uid:* get score:uid:* List<String> result = jedis.sort("tom:friend:list", sortingParameters); for (String item : result) { System.out.println("item..." + item); } } /** * * 只获取对象而不排序 BY 修饰符可以将一个不存在的 key 当作权重,让 SORT 跳过排序操作。 * 该方法用于你希望获取外部对象而又不希望引起排序开销时使用。 # 确保fake_key不存在 redis> EXISTS fake_key * (integer) 0 # 以fake_key作BY参数,不排序,只GET name 和 GET password redis> SORT * user_id BY fake_key GET # GET user_name_* GET user_password_* 1) "222" # * id 2) "hacker" # user_name 3) "hey,im in" # password 4) "59230" 5) "jack" * 6) "jack201022" 7) "2" 8) "huangz" 9) "nobodyknows" 10) "1" 11) "admin" * 12) "a_long_long_password" */ public void testSort4() { } /** * 保存排序结果 默认情况下, SORT 操作只是简单地返回排序结果,如果你希望保存排序结果,可以给 STORE 选项指定一个 key * 作为参数,排序结果将以列表的形式被保存到这个 key 上。(若指定 key 已存在,则覆盖。) redis> EXISTS * user_info_sorted_by_level # 确保指定key不存在 (integer) 0 redis> SORT user_id BY * user_level_* GET # GET user_name_* GET user_password_* STORE * user_info_sorted_by_level # 排序 (integer) 12 # 显示有12条结果被保存了 redis> LRANGE * user_info_sorted_by_level 0 11 # 查看排序结果 1) "59230" 2) "jack" 3) * "jack201022" 4) "2" 5) "huangz" 6) "nobodyknows" 7) "222" 8) "hacker" 9) * "hey,im in" 10) "1" 11) "admin" 12) "a_long_long_password" 一个有趣的用法是将 SORT * 结果保存,用 EXPIRE 为结果集设置生存时间,这样结果集就成了 SORT 操作的一个缓存。 这样就不必频繁地调用 SORT * 操作了,只有当结果集过期时,才需要再调用一次 SORT 操作。 * 有时候为了正确实现这一用法,你可能需要加锁以避免多个客户端同时进行缓存重建(也就是多个客户端,同一时间进行 SORT * 操作,并保存为结果集),具体参见 SETNX 命令。 */ @Test public void testSort5() { // 排序默认以数字作为对象,值被解释为双精度浮点数,然后进行比较 Jedis jedis = RedisUtil.getJedis(); // 一般SORT用法 最简单的SORT使用方法是SORT key。 jedis.lpush("mylist", "1"); jedis.lpush("mylist", "4"); jedis.lpush("mylist", "6"); jedis.lpush("mylist", "3"); jedis.lpush("mylist", "0"); // List<String> list = redis.sort("sort");// 默认是升序 SortingParams sortingParameters = new SortingParams(); sortingParameters.desc(); // sortingParameters.alpha();//当数据集中保存的是字符串值时,你可以用 ALPHA // 修饰符(modifier)进行排序。 // sortingParameters.limit(0, 2);//可用于分页查询 // 没有使用 STORE 参数,返回列表形式的排序结果. 使用 STORE 参数,返回排序结果的元素数量。 jedis.sort("mylist", sortingParameters, "mylist");// 排序后指定排序结果到一个KEY中,这里讲结果覆盖原来的KEY List<String> list = jedis.lrange("mylist", 0, -1); for (int i = 0; i < list.size(); i++) { System.out.println(list.get(i)); } jedis.sadd("tom:friend:list", "123"); // tom的好友列表 jedis.sadd("tom:friend:list", "456"); jedis.sadd("tom:friend:list", "789"); jedis.sadd("tom:friend:list", "101"); jedis.set("score:uid:123", "1000"); // 好友对应的成绩 jedis.set("score:uid:456", "6000"); jedis.set("score:uid:789", "100"); jedis.set("score:uid:101", "5999"); jedis.set("uid:123", "{'uid':123,'name':'lucy'}"); // 好友的详细信息 jedis.set("uid:456", "{'uid':456,'name':'jack'}"); jedis.set("uid:789", "{'uid':789,'name':'jay'}"); jedis.set("uid:101", "{'uid':101,'name':'jolin'}"); sortingParameters = new SortingParams(); // sortingParameters.desc(); sortingParameters.get("#");// GET 还有一个特殊的规则—— "GET #" // ,用于获取被排序对象(我们这里的例子是 user_id )的当前元素。 sortingParameters.by("score:uid:*"); jedis.sort("tom:friend:list", sortingParameters, "tom:friend:list"); List<String> result = jedis.lrange("tom:friend:list", 0, -1); for (String item : result) { System.out.println("item..." + item); } jedis.flushDB(); RedisUtil.closeJedis(jedis); } public void testMore(){ //ZRANGE取出最新的10个项目。 //使用LPUSH + LTRIM,确保只取出最新的1000条项目。 //HINCRBY key field increment,为哈希表 key 中的域 field 的值加上增量 increment //INCRBY,HINCRBY等等,redis有了原子递增(atomic increment),你可以放心的加上各种计数,用GETSET重置,或者是让它们过期。 // LREM greet 2 morning # 移除从表头到表尾,最先发现的两个 morning,这个可以用来删除特定评论 // zrevrank test a 查看a在sorted set中倒排序时排在第几名,查询结果按照INDEX,所以INDEX是3表示排在第四名 // zrank test a 相反,表示正排序时候的名次 // zscore test one表示one这个元素在sorted set中的score为多少 // zrevrange test 0 -1 表示sorted set倒排序,zrange test 0 -1表示正排序 //将一个或多个 member 元素及其 score 值加入到有序集 key 当中。如果某个 member 已经是有序集的成员,那么更新这个 member 的 score 值,并通过重新插入这个 member 元素,来保证该 member 在正确的位置上。 //zrem test one删除sorted set中某个元素 } public List<String> get_latest_comments(int start, int num_items){ //获取最新评论 //LPUSH latest.comments <ID> //-我们将列表裁剪为指定长度,因此Redis只需要保存最新的5000条评论: //LTRIM latest.comments 0 5000 //们做了限制不能超过5000个ID,因此我们的获取ID函数会一直询问Redis。只有在start/count参数超出了这个范围的时候,才需要去访问数据库。 Jedis jedis = RedisUtil.getJedis(); List<String> id_list = jedis.lrange("latest.comments",start,start+num_items-1) ; if(id_list.size()<num_items){ //id_list = SQL.EXECUTE("SELECT ... ORDER BY time LIMIT ..."); } return id_list; } @Test public void testDB() { Jedis jedis = RedisUtil.getJedis(); System.out.println(jedis.select(0));// select db-index // 通过索引选择数据库,默认连接的数据库所有是0,默认数据库数是16个。返回1表示成功,0失败 System.out.println(jedis.dbSize());// dbsize 返回当前数据库的key数量 System.out.println(jedis.keys("*")); // 返回匹配指定模式的所有key System.out.println(jedis.randomKey()); jedis.flushDB();// 删除当前数据库中所有key,此方法不会失败。慎用 jedis.flushAll();// 删除所有数据库中的所有key,此方法不会失败。更加慎用 } @Test public void testMget() { Jedis jedis = RedisUtil.getJedis(); jedis.flushDB();// 删除当前数据库中所有key,此方法不会失败。慎用 jedis.rpush("ids", "aa"); jedis.rpush("ids", "bb"); jedis.rpush("ids", "cc"); List<String> ids = jedis.lrange("ids", 0, -1); jedis.set("aa", "{'name':'zhoujie','age':20}"); jedis.set("bb", "{'name':'yilin','age':28}"); jedis.set("cc", "{'name':'lucy','age':21}"); List<String> list = jedis.mget(ids.toArray(new String[ids.size()])); System.out.println(list); } /** * 可以利用lrange对list进行分页操作 */ @Test public void queryPageBy() { int pageNo = 6; int pageSize = 6; Jedis jedis = RedisUtil.getJedis(); jedis.del("a"); for (int i = 1; i <= 30; i++) { jedis.rpush("a", i + ""); } int start = pageSize * (pageNo - 1);// 因为redis中list元素位置基数是0 int end = start + pageSize - 1; List<String> results = jedis.lrange("a", start, end);// 从start算起,start算一个元素,到结束那个元素 for (String str : results) { System.out.println(str); } } @Test /** * [向Redis list压入ID而不是实际的数据] 在上面的例子里 ,我们将“对象”(此例中是简单消息)直接压入Redis list,但通常不应这么做, 由于对象可能被多次引用:例如在一个list中维护其时间顺序,在一个集合中保存它的类别,只要有必要,它还会出现在其他list中,等等。 让我们回到reddit.com的例子,将用户提交的链接(新闻)添加到list中,有更可靠的方法如下所示: $ redis-cli incr next.news.id (integer) 1 $ redis-cli set news:1:title "Redis is simple" OK $ redis-cli set news:1:url "http://code.google.com/p/redis" OK $ redis-cli lpush submitted.news 1 OK 我们自增一个key,很容易得到一个独一无二的自增ID,然后通过此ID创建对象–为对象的每个字段设置一个key。最后将新对象的ID压入submitted.news list。 这只是牛刀小试。在命令参考文档中可以读到所有和list有关的命令。你可以删除元素,旋转list,根据索引获取和设置元素,当然也可以用LLEN得到list的长度。 */ public void testListStrUsage() { String title = "太阳能是绿色能源4"; String url = "http://javacreazyer.iteye.com"; Jedis jedis = RedisUtil.getJedis(); long adInfoId = jedis.incr("ad:adinfo:next.id"); jedis.set("ad:adinfo:" + adInfoId + ":title", title); jedis.set("ad:adinfo:" + adInfoId + ":url", url); jedis.lpush("ad:adinfo", String.valueOf(adInfoId)); String resultTitle = jedis.get("ad:adinfo:" + adInfoId + ":title"); String resultUrl = jedis.get("ad:adinfo:" + adInfoId + ":url"); List<String> ids = jedis.lrange("ad:adinfo", 0, -1); System.out.println(resultTitle); System.out.println(resultUrl); System.out.println(ids); /** * dbsize返回的是所有key的数目,包括已经过期的, 而redis-cli keys "*"查询得到的是有效的key数目 */ System.out.println(jedis.dbSize()); jedis.flushAll(); } /** * 下面是一个简单的方案:对每个想加标签的对象,用一个标签ID集合与之关联,并且对每个已有的标签,一组对象ID与之关联。 例如假设我们的新闻ID * 1000被加了三个标签tag 1,2,5和77,就可以设置下面两个集合: $ redis-cli sadd news:1000:tags 1 * (integer) 1 $ redis-cli sadd news:1000:tags 2 (integer) 1 $ redis-cli * sadd news:1000:tags 5 (integer) 1 $ redis-cli sadd news:1000:tags 77 * (integer) 1 $ redis-cli sadd tag:1:objects 1000 (integer) 1 $ redis-cli * sadd tag:2:objects 1000 (integer) 1 $ redis-cli sadd tag:5:objects 1000 * (integer) 1 $ redis-cli sadd tag:77:objects 1000 (integer) 1 * 要获取一个对象的所有标签,如此简单: $ redis-cli smembers news:1000:tags 1. 5 2. 1 3. 77 4. * 2 而有些看上去并不简单的操作仍然能使用相应的Redis命令轻松实现。例如我们也许想获得一份同时拥有标签1, 2, * 10和27的对象列表。这可以用SINTER命令来做,他可以在不同集合之间取出交集。因此为达目的我们只需: $ redis-cli sinter * tag:1:objects tag:2:objects tag:10:objects tag:27:objects ... no result * in our dataset composed of just one object ... * 在命令参考文档中可以找到和集合相关的其他命令,令人感兴趣的一抓一大把。一定要留意SORT命令,Redis集合和list都是可排序的。 */ @Test public void testSetUsage() { Jedis jedis = RedisUtil.getJedis(); jedis.sadd("zhongsou:news:1000:tags", "1"); jedis.sadd("zhongsou:news:1000:tags", "2"); jedis.sadd("zhongsou:news:1000:tags", "5"); jedis.sadd("zhongsou:news:1000:tags", "77"); jedis.sadd("zhongsou:news:2000:tags", "1"); jedis.sadd("zhongsou:news:2000:tags", "2"); jedis.sadd("zhongsou:news:2000:tags", "5"); jedis.sadd("zhongsou:news:2000:tags", "77"); jedis.sadd("zhongsou:news:3000:tags", "2"); jedis.sadd("zhongsou:news:4000:tags", "77"); jedis.sadd("zhongsou:news:5000:tags", "1"); jedis.sadd("zhongsou:news:6000:tags", "5"); jedis.sadd("zhongsou:tag:1:objects", 1000 + ""); jedis.sadd("zhongsou:tag:2:objects", 1000 + ""); jedis.sadd("zhongsou:tag:5:objects", 1000 + ""); jedis.sadd("zhongsou:tag:77:objects", 1000 + ""); jedis.sadd("zhongsou:tag:1:objects", 2000 + ""); jedis.sadd("zhongsou:tag:2:objects", 2000 + ""); jedis.sadd("zhongsou:tag:5:objects", 2000 + ""); jedis.sadd("zhongsou:tag:77:objects", 2000 + ""); Set<String> sets = jedis.sinter("zhongsou:tag:1:objects", "zhongsou:tag:2:objects", "zhongsou:tag:5:objects", "zhongsou:tag:77:objects"); System.out.println(sets); jedis.flushAll(); } @Test public void testSortedSetUsage() { Jedis jedis = RedisUtil.getJedis(); jedis.zadd("zhongsou:hackers", 1940, "Alan Kay"); jedis.zadd("zhongsou:hackers", 1953, "Richard Stallman"); jedis.zadd("zhongsou:hackers", 1943, "Jay"); jedis.zadd("zhongsou:hackers", 1920, "Jellon"); jedis.zadd("zhongsou:hackers", 1965, "Yukihiro Matsumoto"); jedis.zadd("zhongsou:hackers", 1916, "Claude Shannon"); jedis.zadd("zhongsou:hackers", 1969, "Linus Torvalds"); jedis.zadd("zhongsou:hackers", 1912, "Alan Turing"); Set<String> hackers = jedis.zrange("zhongsou:hackers", 0, -1); System.out.println(hackers); Set<String> hackers2 = jedis.zrevrange("zhongsou:hackers", 0, -1); System.out.println(hackers2); // 区间操作,我们请求Redis返回score介于负无穷到1920年之间的元素(两个极值也包含了)。 Set<String> hackers3 = jedis.zrangeByScore("zhongsou:hackers", "-inf", "1920"); System.out.println(hackers3); // ZREMRANGEBYSCORE 这个名字虽然不算好,但他却非常有用,还会返回已删除的元素数量。 long num = jedis.zremrangeByScore("zhongsou:hackers", "-inf", "1920"); System.out.println(num); jedis.flushAll(); } }
/** * 获取连接池. * @return 连接池实例 */ private static JedisPool getPool(String ip,int port) { JedisPoolConfig config = new JedisPoolConfig(); config.setMaxActive(RedisConfig.getMaxactive()); config.setMaxIdle(RedisConfig.getMaxidle()); config.setMaxWait(RedisConfig.getMaxwait()); config.setTestOnBorrow(true); config.setTestOnReturn(true); try{ /** *如果你遇到 java.net.SocketTimeoutException: Read timed out exception的异常信息 *请尝试在构造JedisPool的时候设置自己的超时值. JedisPool默认的超时时间是2秒(单位毫秒) */ pool = new JedisPool(config, ip, port,RedisConfig.getTimeout()); } catch(Exception e) { e.printStackTrace(); } return pool; }
附加一个工作中常用到的Jedis工具类,如下:
package com.zhongsou.vertportal.util; import java.util.HashMap; import java.util.Map; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPool; import redis.clients.jedis.JedisPoolConfig; import com.zhongsou.vertportal.conf.BaseConfig; import com.zhongsou.vertportal.conf.RedisConfig; /** * Redis工具类,用于获取RedisPool. * 参考官网说明如下: * You shouldn't use the same instance from different threads because you'll have strange errors. * And sometimes creating lots of Jedis instances is not good enough because it means lots of sockets and connections, * which leads to strange errors as well. A single Jedis instance is not threadsafe! * To avoid these problems, you should use JedisPool, which is a threadsafe pool of network connections. * This way you can overcome those strange errors and achieve great performance. * To use it, init a pool: * JedisPool pool = new JedisPool(new JedisPoolConfig(), "localhost"); * You can store the pool somewhere statically, it is thread-safe. * JedisPoolConfig includes a number of helpful Redis-specific connection pooling defaults. * For example, Jedis with JedisPoolConfig will close a connection after 300 seconds if it has not been returned. * @author wujintao */ public class JedisUtil { protected Logger log = LoggerFactory.getLogger(getClass()); /** * 私有构造器. */ private JedisUtil() { } private static Map<String,JedisPool> maps = new HashMap<String,JedisPool>(); /** * 获取连接池. * @return 连接池实例 */ private static JedisPool getPool(String ip,int port) { String key = ip+":" +port; JedisPool pool = null; if(!maps.containsKey(key)) { JedisPoolConfig config = new JedisPoolConfig(); config.setMaxActive(RedisConfig.getMaxactive()); config.setMaxIdle(RedisConfig.getMaxidle()); config.setMaxWait(RedisConfig.getMaxwait()); config.setTestOnBorrow(true); config.setTestOnReturn(true); try{ /** *如果你遇到 java.net.SocketTimeoutException: Read timed out exception的异常信息 *请尝试在构造JedisPool的时候设置自己的超时值. JedisPool默认的超时时间是2秒(单位毫秒) */ pool = new JedisPool(config, ip, port,RedisConfig.getTimeout()); maps.put(key, pool); } catch(Exception e) { e.printStackTrace(); } }else{ pool = maps.get(key); } return pool; } /** *类级的内部类,也就是静态的成员式内部类,该内部类的实例与外部类的实例 *没有绑定关系,而且只有被调用到时才会装载,从而实现了延迟加载。 */ private static class RedisUtilHolder{ /** * 静态初始化器,由JVM来保证线程安全 */ private static JedisUtil instance = new JedisUtil(); } /** *当getInstance方法第一次被调用的时候,它第一次读取 *RedisUtilHolder.instance,导致RedisUtilHolder类得到初始化;而这个类在装载并被初始化的时候,会初始化它的静 *态域,从而创建RedisUtil的实例,由于是静态的域,因此只会在虚拟机装载类的时候初始化一次,并由虚拟机来保证它的线程安全性。 *这个模式的优势在于,getInstance方法并没有被同步,并且只是执行一个域的访问,因此延迟初始化并没有增加任何访问成本。 */ public static JedisUtil getInstance() { return RedisUtilHolder.instance; } /** * 获取Redis实例. * @return Redis工具类实例 */ public Jedis getJedis(String ip,int port) { Jedis jedis = null; int count =0; do{ try{ jedis = getPool(ip,port).getResource(); //log.info("get redis master1!"); } catch (Exception e) { log.error("get redis master1 failed!", e); // 销毁对象 getPool(ip,port).returnBrokenResource(jedis); } count++; }while(jedis==null&&count<BaseConfig.getRetryNum()); return jedis; } /** * 释放redis实例到连接池. * @param jedis redis实例 */ public void closeJedis(Jedis jedis,String ip,int port) { if(jedis != null) { getPool(ip,port).returnResource(jedis); } } }