zoukankan      html  css  js  c++  java
  • 线程池基础二

    我们来看程序的代码:

    package com.bjsxt.height.concurrent019;
    
    import java.util.concurrent.CountDownLatch;
    
    public class UseCountDownLatch {
    
        public static void main(String[] args) {
            
            final CountDownLatch countDown = new CountDownLatch(2);
            
            Thread t1 = new Thread(new Runnable() {
                @Override
                public void run() {
                    try {
                        System.out.println("进入线程t1" + "等待其他线程处理完成...");
                        countDown.await();
                        System.out.println("t1线程继续执行...");
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            },"t1");
            
            Thread t2 = new Thread(new Runnable() {
                @Override
                public void run() {
                    try {
                        System.out.println("t2线程进行初始化操作...");
                        Thread.sleep(3000);
                        System.out.println("t2线程初始化完毕,通知t1线程继续...");
                        countDown.countDown();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            });
            Thread t3 = new Thread(new Runnable() {
                @Override
                public void run() {
                    try {
                        System.out.println("t3线程进行初始化操作...");
                        Thread.sleep(4000);
                        System.out.println("t3线程初始化完毕,通知t1线程继续...");
                        countDown.countDown();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            });
            
            t1.start();
            t2.start();
            t3.start();
            
            
            
        }
    }

    程序运行的结果是:

    t3线程进行初始化操作...
    t2线程进行初始化操作...
    t2线程初始化完毕,通知t1线程继续...
    t3线程初始化完毕,通知t1线程继续...
    t1线程继续执行...

    t1线程只有等t2和t3线程初始化完成之后才能执行.....

    package com.bjsxt.height.concurrent019;
    import java.io.IOException;  
    import java.util.Random;  
    import java.util.concurrent.BrokenBarrierException;  
    import java.util.concurrent.CyclicBarrier;  
    import java.util.concurrent.ExecutorService;  
    import java.util.concurrent.Executors; 
    public class UseCyclicBarrier {
    
        static class Runner implements Runnable {  
            private CyclicBarrier barrier;  
            private String name;  
            
            public Runner(CyclicBarrier barrier, String name) {  
                this.barrier = barrier;  
                this.name = name;  
            }  
            @Override  
            public void run() {  
                try {  
                    Thread.sleep(1000 * (new Random()).nextInt(5));  
                    System.out.println(name + " 准备OK.");  
                    barrier.await();  
                } catch (InterruptedException e) {  
                    e.printStackTrace();  
                } catch (BrokenBarrierException e) {  
                    e.printStackTrace();  
                }  
                System.out.println(name + " Go!!");  
            }  
        } 
        
        public static void main(String[] args) throws IOException, InterruptedException {  
            CyclicBarrier barrier = new CyclicBarrier(3);  // 3 
            ExecutorService executor = Executors.newFixedThreadPool(3);  
            
            executor.submit(new Thread(new Runner(barrier, "zhangsan")));  
            executor.submit(new Thread(new Runner(barrier, "lisi")));  
            executor.submit(new Thread(new Runner(barrier, "wangwu")));  
      
            executor.shutdown();  
        }  
      
    }  

    程序的运行结果是:

    lisi 准备OK.
    zhangsan 准备OK.
    wangwu 准备OK.
    wangwu Go!!
    lisi Go!!
    zhangsan Go!!

    future模式看我们之前的多线程基础一future模式,jdk给我们提供了封装好的工具类

    package com.bjsxt.height.concurrent019;
    
    import java.util.concurrent.Callable;
    import java.util.concurrent.ExecutorService;
    import java.util.concurrent.Executors;
    import java.util.concurrent.Future;
    import java.util.concurrent.FutureTask;
    
    public class UseFuture implements Callable<String>{
        private String para;
        
        public UseFuture(String para){
            this.para = para;
        }
        
        /**
         * 这里是真实的业务逻辑,其执行可能很慢
         */
        @Override
        public String call() throws Exception {
            //模拟执行耗时
            Thread.sleep(5000);
            String result = this.para + "处理完成";
            return result;
        }
        
        //主控制函数
        public static void main(String[] args) throws Exception {
            String queryStr = "query";
            //构造FutureTask,并且传入需要真正进行业务逻辑处理的类,该类一定是实现了Callable接口的类
            FutureTask<String> future = new FutureTask<String>(new UseFuture(queryStr));
            
            FutureTask<String> future2 = new FutureTask<String>(new UseFuture(queryStr));
            //创建一个固定线程的线程池且线程数为1,
            ExecutorService executor = Executors.newFixedThreadPool(2);
            //这里提交任务future,则开启线程执行RealData的call()方法执行
            //submit和execute的区别: 第一点是submit可以传入实现Callable接口的实例对象, 第二点是submit方法有返回值
            
            Future f1 = executor.submit(future);        //单独启动一个线程去执行的
            Future f2 = executor.submit(future2);
            System.out.println("请求完毕");
            
            try {
                //这里可以做额外的数据操作,也就是主程序执行其他业务逻辑
                System.out.println("处理实际的业务逻辑...");
                Thread.sleep(1000);
            } catch (Exception e) {
                e.printStackTrace();
            }
            //调用获取数据方法,如果call()方法没有执行完成,则依然会进行等待
            System.out.println("数据:" + future.get());
            System.out.println("数据:" + future2.get());
            
            executor.shutdown();
        }
    
    }

    程序的运行结果是:

    请求完毕
    处理实际的业务逻辑...
    数据:query处理完成
    数据:query处理完成

     

    package com.bjsxt.height.concurrent019;
    
    import java.util.concurrent.ExecutorService;  
    import java.util.concurrent.Executors;  
    import java.util.concurrent.Semaphore;  
      
    public class UseSemaphore {  
      
        public static void main(String[] args) {  
            // 线程池  
            ExecutorService exec = Executors.newCachedThreadPool();  
            // 只能5个线程同时访问  
            final Semaphore semp = new Semaphore(5);  
            // 模拟20个客户端访问  
            for (int index = 0; index < 20; index++) {  
                final int NO = index;  
                Runnable run = new Runnable() {  
                    public void run() {  
                        try {  
                            // 获取许可  
                            semp.acquire();  
                            System.out.println("Accessing: " + NO);  
                            //模拟实际业务逻辑
                            Thread.sleep((long) (Math.random() * 10000));  
                            // 访问完后,释放  
                            semp.release();  
                        } catch (InterruptedException e) {  
                        }  
                    }  
                };  
                exec.execute(run);  
            } 
            
            try {
                Thread.sleep(10);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            
            //System.out.println(semp.getQueueLength());
            
            
            
            // 退出线程池  
            exec.shutdown();  
        }  
      
    }  

    每次只能运行5个线程同时执行某个方法

    程序运行的结果是:

    Accessing: 0
    Accessing: 3
    Accessing: 2
    Accessing: 1
    Accessing: 4
    Accessing: 5
    Accessing: 6
    Accessing: 7
    Accessing: 8
    Accessing: 9
    Accessing: 10
    Accessing: 11
    Accessing: 12
    Accessing: 13
    Accessing: 14
    Accessing: 15
    Accessing: 16
    Accessing: 17
    Accessing: 18
    Accessing: 19

    使用信号量实现流量的控制,达到限流的功能,减少业务访问的压力

  • 相关阅读:
    【转载】高内聚低耦合
    【转载】locate命令的使用
    【转载】C内存对齐
    【原创】_INTSIZEOF 内存按照int对齐
    【转载】free查看内存
    Hive查询Join
    Hive数据查询
    Hive导入数据
    Hive表的修改Alter
    Hive中排序和聚集
  • 原文地址:https://www.cnblogs.com/kebibuluan/p/7641348.html
Copyright © 2011-2022 走看看