思路:
1. dp[k][x][y] 表示处理到第 k 个时间区间时,最终点落在 x, y 坐标上,移动的最大距离。
3. dp[k][x][y] = max(dp[k-1][x1][y1] + delta); 由于 delta 是相对偏移量,所以对于 x/y 所在的维度可以用单调队列优化。
4. 由于第 k - 1 次之后,无法确定第 k 步的起始位置,所以要采取枚举的办法,所以最终的时间复杂度为 O(N*M*K)
5. 初始状态为 dp[0][x][y] = 0, 其他赋值为 -INFS,这样才能保证枚举的过程中,最终结果是在以 (x, y) 为起始点出发的。
#include <iostream>#include <cstdio>#include <algorithm>using namespace std;const int MAXN = 210;const int INFS = 0x3fffffff;int dx[5] = {-1, 1, 0, 0};int dy[5] = {0, 0, -1, 1};char grid[MAXN][MAXN];int t1, t2, dp[2][MAXN][MAXN], deq[MAXN], pos[MAXN];void solvedp(int x, int y, int width, int size, int d){ int s = 0, e = -1; for (int i = 1; i <= width; ++i) { if (grid[x][y] == '.') { int val = dp[t1][x][y] - i; while (s <= e && deq[e] < val) --e; deq[++e] = val, pos[e] = i; while (i - pos[s] > size) ++s; dp[t2][x][y] = deq[s] + i; } else { s = 0, e = -1; dp[t2][x][y] = -INFS; } x += dx[d], y += dy[d]; }}int main(){ int N, M, x, y, K; while (scanf("%d %d %d %d %d", &N, &M, &x, &y, &K) != EOF) { for (int i = 1; i <= N; ++i) scanf("%s", &grid[i][1]); for (int i = 1; i <= N; ++i) for (int j = 1; j <= M; ++j) dp[0][i][j] = -INFS; dp[0][x][y] = 0; t1 = 1, t2 = 0; for (int i = 0; i < K; ++i) { int si, ti, di; scanf("%d %d %d", &si, &ti, &di); t1 ^= 1, t2 ^= 1; if (di == 1) { for (int j = 1; j <= M; ++j) solvedp(N, j, N, ti - si + 1, di - 1); } else if (di == 2) { for (int j = 1; j <= M; ++j) solvedp(1, j, N, ti - si + 1, di - 1); } else if (di == 3) { for (int j = 1; j <= N; ++j) solvedp(j, M, M, ti - si + 1, di - 1); } else if (di == 4) { for (int j = 1; j <= N; ++j) solvedp(j, 1, M, ti - si + 1, di - 1); } } int ans = 0; for (int i = 1; i <= N; ++i) for (int j = 1; j <= M; ++j) ans = max(ans, dp[t2][i][j]); printf("%d\n", ans); } return 0;}