zoukankan      html  css  js  c++  java
  • POJ 3017 Cut the Sequence(DP + 单调队列优化 + 平衡树)

    题意:

    长度为 n 的数列,要求把这个数列划分为任意块,每块的元素和小于 m,使得所有块的最大值的和最小。

    思路:

    1. 很明显的一个转移方程是: dp[i] = max(dp[j] + max(a[j+1], a[j+2], ..., a[i])); 其中满足 sum[i] - sum[j] <= M 的 j 都算,这是一个 O(N * N) 的解法。

    2. 如果不去优化枚举 j 的这个过程,就会直接 TLE,如何优化?联系到求最大值,可以想到用最大值的单调队列,队列里面存放的是以 i 为结尾,窗口里面的元素和

       恰好不大于 M 的 j 为左边界,即恰好有 sum[i] - sum[j-1] <= M.

    3. 如果是这样的话,还不能够达到目标,因为 1 中最优值点的 j 的选择可能是窗口中的任意一个值,这时候遇到一个困难:确定 j 的位置,使情况最优。

    4. 考虑到 dp[i] 是一个单调增的数组,而窗口中的元素是关于最大值递减的,先让 M 足够大,从简单的角度来考虑:对于 a[1] = 8, a[2] = 5, a[3] = 7,对于 dp[3]

       则有 dp[3] = min(dp[0] + 8, dp[1] + 7, dp[2] + 7),显然 dp[1] <= dp[2],则进一步优化有 dp[3] = min(dp[0] + 8, dp[1] + 7);

    5. 从 4 中我们可以看出点端倪,单调队列中所指向的元素也恰好是 8, 7,所以得出的结论有:对于 dp[i] 只要选择单调队列中所指向的位置的 j 即可保证结果是最优的。

    6. 如何维护单调队列中的 dp[j] + max(a[j+1], a[j+2], ..., a[i]),则考虑使用一个平衡树,这样可以把时间复杂度降到最低。

    #include <iostream>
    #include <set>
    #include <algorithm>
    using namespace std;
    
    #define LL long long int
    
    const int MAXN = 100010;
    
    int num[MAXN], deq[MAXN];
    LL dp[MAXN];
    multiset<LL> optset;
    
    int main()
    {
        LL N, M;
    
        scanf("%lld %lld", &N, &M);
        for (int i = 1; i <= N; ++i)
            scanf("%d", &num[i]);
    
        LL sum = 0;
        int s = 0, e = -1, p = 1;
        bool flag = false;
    
        optset.clear();
        for (int i = 1; i <= N; ++i)
        {
            if (num[i] > M)
            {
                flag = true;
                break;
            }
    
            sum += num[i];
            while (sum > M)
                sum -= num[p++];
    
            while (s <= e && num[i] >= num[deq[e]])
            {
                if (s < e)
                    optset.erase(dp[deq[e-1]] + num[deq[e]]);
                --e;
            }
    
            deq[++e] = i;
            if (s < e)
                optset.insert(dp[deq[e-1]] + num[deq[e]]);
    
            while (deq[s] < p)
            {
                if (s < e)
                    optset.erase(dp[deq[s]] + num[deq[s+1]]);
                ++s;
            }
    
            dp[i] = dp[p-1] + num[deq[s]];
            if (s < e && dp[i] > *optset.begin())
                dp[i] = *optset.begin();
        }
        if (flag)
            dp[N] = -1;
        printf("%lld\n", dp[N]);
        return 0;
    }
  • 相关阅读:
    JavaScript 的核心机制——event loop(最易懂版)
    关于敏捷讨论的感想
    前端,如何更优雅的面对异步
    广告行业中那些趣事系列10:推荐系统中不得不说的DSSM双塔模型
    书中自有黄金屋系列7:读《博世宁医学通识讲义》
    广告行业中那些趣事系列9:一网打尽Youtube深度学习推荐系统
    书中自有黄金屋系列6:读《浪潮之巅》-下篇
    书中自有黄金屋系列6:读《浪潮之巅》-上篇
    广告行业中那些趣事系列8:详解BERT中分类器源码
    书中自有黄金屋系列5:读《正面管教》
  • 原文地址:https://www.cnblogs.com/kedebug/p/2939428.html
Copyright © 2011-2022 走看看