zoukankan      html  css  js  c++  java
  • POJ 1077 Eight(DFS + IDA*)

    题意:

    一个3*3的棋盘里,给8个格子填上1-8这8个数,另一个格子空着。每一步,可以将与空格相邻的格子与空格换位,换位方式可间接体现成空格进行上下左右的移动。先给定一个棋盘状态,问能否经过若干步后,将棋盘变成第一行123,第二行456,第三行78空的状态。若能,输出任意一种可行步骤。

    思路:

    1. IDA* : f(s) = h(s) + g(s); 可以理解 f 为在状态 s 时距离目标状态的理想距离,f 单调增,并且 f 越小越有可能是我们想要的;

    2. 初始状态的 bound 为初始状态到目标状态曼哈顿距离,newbound 为每次 DFS 之后所能达到的理想状态,当然 newbound 越小越好;

    3. bound = newbound,继续递归,知道 succ = true 为止;

    #include <iostream>
    #include <algorithm>
    #include <queue>
    using namespace std;
    
    const int MAXN = 362880 + 10;
    const int INFS = 0x7fffffff;
    
    const int fac[15] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880};
    const char dir[5] = {0, 'u', 'd', 'l', 'r'};
    const int dis[9][2] = {{0,0}, {0,1}, {0,2}, {1,0}, {1,1}, {1,2}, {2,0}, {2,1}, {2,2}};
    
    bool vis[MAXN], succ;
    int Q[MAXN], QC, ENDS;
    
    
    struct ST {
        char e[10];
    };
    
    int getvalue(const char e[]) {
        int ans = 0, count;
        for (int i = 0; i < 8; i++) {
            count = 0;
            for (int j = i + 1; j < 9; j++) {
                if (e[i] > e[j]) count += 1;
            }
            ans += fac[8-i] * count;
        }
        return ans;
    }
    
    bool challenge(ST& s, int pos, int op) {
        if (op == 1) {
            // up
            if (pos >= 3) {
                swap(s.e[pos-3], s.e[pos]);
                return true;
            }
        } else if (op == 2) {
            // down
            if (pos < 6) {
                swap(s.e[pos], s.e[pos+3]);
                return true;
            }
        } else if (op == 3) {
            // left
            if (pos % 3) {
                swap(s.e[pos-1], s.e[pos]);
                return true;
            }
        } else if (op == 4) {
            // right
            if ((pos + 1) % 3) {
                swap(s.e[pos], s.e[pos+1]);
                return true;
            }
        }
        return false;
    }
    
    int getdiff(const char e[]) {
        int ret = 0;
        for (int i = 0; i < 3; i++) {
            for (int j = 0; j < 3; j++) {
                int k = 3 * i + j;
                if (e[k] != 9) {
                    ret += abs(i - dis[e[k]-1][0]) + abs(j - dis[e[k]-1][1]);
                }
            }
        }
        return ret;
    }
    
    int dfs(ST& u, int g, int bound) {
    
        int h = getdiff(u.e);
        if (h == 0 || succ) {
            succ = true;
            return g;
        }
        if (g + h > bound) {
            return g + h;
        }
    
        int newbound = INFS;
        int pos;
        for (int i = 0; i < 9; i++)
            if (u.e[i] == 9)  pos = i;
    
        for (int i = 1; i <= 4; i++) {
            ST v = u;
            if (challenge(v, pos, i)) {
                int state = getvalue(v.e);
                if (!vis[state]) {
                    vis[state] = true;
                    Q[QC++] = i;
                    int b = dfs(v, g + 1, bound);
                    if (succ)
                        return b;
                    QC -= 1;
                    newbound = min(b, newbound);
                    vis[state] = false;
                    challenge(v, pos, i);
                }
            }
        }
        return newbound;
    }
    
    int main() {
        ST u, E;
        for (int i = 0; i < 9; i++)
            E.e[i] = i + 1;
        ENDS = getvalue(E.e);
    
        char ch[100];
        while (gets(ch)) {
            for (int i = 0, j = 0; ch[i]; i++) {
                if (ch[i] != ' ') {
                    if (ch[i] == 'x')
                        u.e[j++] = 9;
                    else
                        u.e[j++] = ch[i] - '0';
                }
            }
    
            if (getvalue(u.e) == ENDS) {
                printf("\n");
                continue;
            }
    
            succ = false;
            int bound = getdiff(u.e);
            while (!succ) {
                QC = 0;
                vis[getvalue(u.e)] = true;
                bound = dfs(u, 0, bound);
                vis[getvalue(u.e)] = false;
            }
    
            for (int i = 0; i < QC; i++)
                printf("%c", dir[Q[i]]);
            printf("\n");
        }
        return 0;
    }
  • 相关阅读:
    控制器的设计与实现(五)
    综述(一)
    需求分析与数据库设计(二)
    对MVC架构简单概述设计(三)
    排球计分规则——记分员
    Java程序员必看书籍
    java面试必背知识点
    深入浅出UML
    从svn检出的项目缺少.project和.classpath文件解决办法
    打印函数 lodop
  • 原文地址:https://www.cnblogs.com/kedebug/p/2977559.html
Copyright © 2011-2022 走看看