题意:
现在需要把棋盘分割成 n 块矩形棋盘,并使各矩形棋盘总分的均方差最小。
思路:
化简公式,记忆化搜索。
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
const int INFS = 0x3FFFFFFF;
int square[10][10][10][10], grid[10][10];
int dp[10][10][10][10][16];
void initsquare() {
for (int i = 1; i <= 8; i++) {
for (int j = 1; j <= 8; j++) {
for (int p = i; p <= 8; p++) {
for (int q = j; q <= 8; q++) {
int t = 0;
for (int x = i; x <= p; x++)
for (int y = j; y <= q; y++)
t += grid[x][y];
square[i][j][p][q] = t * t;
}
}
}
}
}
int solvedp(int k, int x, int y, int ex, int ey) {
if (k == 1)
return square[x][y][ex][ey];
if (dp[x][y][ex][ey][k] != -1)
return dp[x][y][ex][ey][k];
int ans = INFS;
for (int i = x; i < ex; i++) {
ans = min(ans, square[x][y][i][ey] + solvedp(k-1, i+1, y, ex, ey));
ans = min(ans, square[i+1][y][ex][ey] + solvedp(k-1, x, y, i, ey));
}
for (int i = y; i < ey; i++) {
ans = min(ans, square[x][y][ex][i] + solvedp(k-1, x, i+1, ex, ey));
ans = min(ans, square[x][i+1][ex][ey] + solvedp(k-1, x, y, ex, i));
}
return dp[x][y][ex][ey][k] = ans;
}
int main() {
int n;
scanf("%d", &n);
double ave = 0;
for (int i = 1; i <= 8; i++) {
for (int j = 1; j <= 8; j++) {
scanf("%d", &grid[i][j]);
ave += grid[i][j];
}
}
initsquare();
memset(dp, -1, sizeof(dp));
double ans = solvedp(n, 1, 1, 8, 8);
ave /= n;
ans /= n;
ans -= ave * ave;
printf("%.3lf\n", sqrt(ans));
return 0;
}