zoukankan      html  css  js  c++  java
  • Python for Data Science

    Chapter 3 - Regressoin Models

    Segment 1 - Simple linear regression

    Linear Regression

    Linear regression is a statistical machine learning method you can use to quantify, and make predictions based on, relationships between numerical variables.

    • Simple linear regression
    • Multiple linear regression

    Linear Regression Use Cases

    • Sales Forecasting
    • Supply Cost Forecasting
    • Resource Consumption Forecasting
    • Telecom Services Lifecycle Forecasting

    Linear Regression Assumptions

    • All variables are continuous numeric, not categorical
    • Data is free of missing values and outliers
    • There's a linear relationship between predictors and predictant
    • All predictors are independent of each other
    • Residuals(or prediction errors) are normally distributed
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import sklearn
    
    from pylab import rcParams
    from sklearn.linear_model import LinearRegression
    from sklearn.preprocessing import scale
    
    %matplotlib inline
    rcParams['figure.figsize'] = 10,8
    
    rooms = 2*np.random.rand(100,1)+3
    rooms[1:10]
    
    array([[3.24615481],
           [4.86219627],
           [3.17742366],
           [3.03114054],
           [3.73270016],
           [3.58047146],
           [3.23240264],
           [4.63462537],
           [3.91227449]])
    
    price = 265 + 6*rooms + abs(np.random.randn(100,1))
    price[1:10]
    
    array([[285.23677074],
           [294.79616144],
           [284.85274605],
           [284.40046371],
           [288.07421652],
           [286.60487136],
           [284.55567969],
           [293.27121913],
           [289.12143579]])
    
    plt.plot(rooms,price,'r^')
    plt.xlabel("# of Rooms, 2019 Average")
    plt.ylabel("2019 Average Home, 1000s USD")
    plt.show()
    

    ML0301output_5_0

    X = rooms
    y = price
    
    LinReg = LinearRegression()
    LinReg.fit(X,y)
    print(LinReg.intercept_, LinReg.coef_)
    
    [266.13626468] [[5.9306674]]
    

    Simple Algebra

    • y = mx + b
    • b = intercept = 266.7

    Estimated Coefficients

    • LinReg.coef_ = [5.93] Estimated coefficients for the terms in the linear regression problem.
    print(LinReg.score(X,y))
    
    0.961246701242803
  • 相关阅读:
    ios入门笔记(创建隐式首选项,实现系统设置,实现文件系统存储)
    ios开发(表视图)
    Android上使用OpenglES2.0遇到的一点问题
    Android平台对H264视频硬解码
    Java GC机制和对象Finalize方法的一点总结
    JVM GC之一找出不可达对象并回收
    docker 使用Data Volume 共享文件
    sscanf函数用法详解
    va_start和va_end使用详解
    NDK 的helloworld步奏
  • 原文地址:https://www.cnblogs.com/keepmoving1113/p/14317781.html
Copyright © 2011-2022 走看看