zoukankan      html  css  js  c++  java
  • Python for Data Science

    Chapter 5 - Dimensionality Reduction Methods

    Segment 2 - Principal component analysis (PCA)

    Singular Value Decomposition

    A linear algebra method that decomposes a matrix into three resultant matrices in order to reduce information redundancy and noise

    SVD is most commonly used for principal component analysis.

    The Anatomy of SVD

    A = u * v * S

    • A = Original matrix
    • u = Left orthogonal matrix: hold important, nonredundant information about observations
    • v = Right orthogonal matrix: holds important, nonredundant information on features
    • S = Diagonal matrix: contains all of the information about the decomposition processes performed during the compression

    Principal Component

    Uncorrelated features that embody a dataset's important information (its "variance") with the redundancy, noise, and outliers stripped out

    PCA Use Cases

    • Fraud Detection
    • Speech Recognition
    • Spam Detection
    • Image Recognition

    Using Factors and Components

    • Both factors and components represent what is left of a dataset after information redundancy and noise is stripped out
    • Use them as input variables for machine learning algorithms to generate predictions from these compressed representations of your data
    import numpy as np
    import pandas as pd
    
    import matplotlib.pyplot as plt
    import pylab as plt
    import seaborn as sb
    from IPython.display import Image
    from IPython.core.display import HTML 
    from pylab import rcParams
    
    import sklearn
    from sklearn import datasets
    
    from sklearn import decomposition
    from sklearn.decomposition import PCA
    
    %matplotlib inline
    rcParams['figure.figsize'] = 5, 4
    sb.set_style('whitegrid')
    

    PCA on the iris dataset

    iris = datasets.load_iris()
    X = iris.data
    variable_names = iris.feature_names
    
    X[0:10,]
    
    array([[5.1, 3.5, 1.4, 0.2],
           [4.9, 3. , 1.4, 0.2],
           [4.7, 3.2, 1.3, 0.2],
           [4.6, 3.1, 1.5, 0.2],
           [5. , 3.6, 1.4, 0.2],
           [5.4, 3.9, 1.7, 0.4],
           [4.6, 3.4, 1.4, 0.3],
           [5. , 3.4, 1.5, 0.2],
           [4.4, 2.9, 1.4, 0.2],
           [4.9, 3.1, 1.5, 0.1]])
    
    pca = decomposition.PCA()
    iris_pca = pca.fit_transform(X)
    
    pca.explained_variance_ratio_
    
    array([0.92461872, 0.05306648, 0.01710261, 0.00521218])
    
    pca.explained_variance_ratio_.sum()
    
    1.0
    
    comps = pd.DataFrame(pca.components_, columns=variable_names)
    comps
    
    sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
    0 0.361387 -0.084523 0.856671 0.358289
    1 0.656589 0.730161 -0.173373 -0.075481
    2 -0.582030 0.597911 0.076236 0.545831
    3 -0.315487 0.319723 0.479839 -0.753657
    sb.heatmap(comps,cmap="Blues", annot=True)
    
    <matplotlib.axes._subplots.AxesSubplot at 0x7f436793d240>
    

    ML0502output_9_1

  • 相关阅读:
    解决Maven关于本地jar包的打包处理
    微信公众帐号应用开发—本地调试
    字符串
    动态类型
    数字
    React文档(二十四)高阶组件
    React文档(二十三)Web Components
    React文档(二十二)context
    React文档(二十一)协调
    React文档(二十)不使用JSX
  • 原文地址:https://www.cnblogs.com/keepmoving1113/p/14321139.html
Copyright © 2011-2022 走看看