zoukankan      html  css  js  c++  java
  • Pytorch学习:CIFAR-10分类

    最近在学习Pytorch,先照着别人的代码过一遍,加油!!!

    加载数据集

    # 加载数据集及预处理
    import torchvision as tv
    import torchvision.transforms as transforms
    from torchvision.transforms import ToPILImage
    import torch as t
    show=ToPILImage() #可以将Tensor转成Image,方便可视化

    划分数据集为训练集和测试集

    #定义对数据的预处理
    transform=transforms.Compose([
        transforms.ToTensor(),  #转为Tensor
        transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5)), #归一化
    ])
    
    #训练集
    trainset=tv.datasets.CIFAR10(
        root='/home/cy/data',
        train=True,
        download=True,
        transform=transform
    )
    
    trainloader=t.utils.data.DataLoader(
        trainset,
        batch_size=4,
        shuffle=True,
        num_workers=2
    )
    
    testset=tv.datasets.CIFAR10(
        '/home/cy/data/',
        train=False,
        download=True,
        transform=transform
    )
    
    testloader=t.utils.data.DataLoader(
        testset,
        batch_size=4,
        shuffle=False,
        num_workers=2
    )
    
    classes=('plane','car','bird','cat','deer','dog','frog','horse','ship','truck')
    Files already downloaded and verified
    Files already downloaded and verified

    可视化看下图片效果
    (data, label)=trainset[100]
    print(classes[label])
    
    #(data+1)是为了还原被归一化的数据
    show((data+1)/2).resize((100,100))

    展示一个mini-batch中的图片

    dataiter=iter(trainloader)
    images,labels=dataiter.next() #返回4张图片及标签
    print(' '.join('%11s'%classes[labels[j]] for j in range(4)))
    show(tv.utils.make_grid((images+1)/2)).resize((400,100))

    定义网络结构,挺方便的

    ## 定义网络
    import torch.nn as nn
    import torch.nn.functional as F
    
    class Net(nn.Module):
        def __init__(self):
            super(Net,self).__init__()
            self.conv1=nn.Conv2d(3,6,5)
            self.conv2=nn.Conv2d(6,16,5)
            self.fc1=nn.Linear(16*5*5,120)
            self.fc2=nn.Linear(120,84)
            self.fc3=nn.Linear(84,10)
            
            
        def forward(self,x):
            x=F.max_pool2d(F.relu(self.conv1(x)),(2,2))
            x=F.max_pool2d(F.relu(self.conv2(x)),2)
            x=x.view(x.size()[0],-1)
            x=F.relu(self.fc1(x))
            x=F.relu(self.fc2(x))
            x=self.fc3(x)
            return x
    
    net=Net()
    print(net)
    Net(
      (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
      (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
      (fc1): Linear(in_features=400, out_features=120, bias=True)
      (fc2): Linear(in_features=120, out_features=84, bias=True)
      (fc3): Linear(in_features=84, out_features=10, bias=True)
    )

    定义损失函数和优化器
    ## 定义损失函数和优化器
    from torch import optim
    criterion=nn.CrossEntropyLoss()  # 交叉熵损失函数
    optimizer=optim.SGD(net.parameters(),lr=0.001,momentum=0.9) #随机梯度下降,stochastic gradient descent

    开始训练网络

    一共有三个步骤。输入数据,前向传播+反向传播,更新参数

    from torch.autograd import Variable
    
    for epoch in range(2):
        running_loss=0.0
        for i,data in enumerate(trainloader,0):
            #输入数据
            inputs,labels=data
            inputs,labels=Variable(inputs),Variable(labels)
            
            #梯度清零
            optimizer.zero_grad()
            
            #forward+backward
            outputs=net(inputs)
            loss=criterion(outputs,labels)
            loss.backward()
            
            #更新参数
            optimizer.step()
            
            #打印log信息
            #running_loss +=loss.data[0]
            running_loss +=loss.item()
            if i%2000 ==1999:   #每2000个batch打印一次训练状态
                print('[%d, %5d] loss: %.3f' 
                     %(epoch+1,i+1,running_loss / 2000))
                running_loss=0.0
    print('Finished Training')

    检查一下网络在一个batch内的效果如何

    ## 检验网络效果
    dataiter=iter(testloader)
    images,labels=dataiter.next() #一个batch返回4张图片
    print('实际的label: ',' '.join(
                '%08s'%classes[labels[j]] for j in range(4)))
    show(tv.utils.make_grid(images/2 -0.5)).resize((400,100))
    
    # 计算网络预测的label
    outputs=net(Variable(images))
    _,predicted=t.max(outputs.data,1)
    print('预测结果: ',' '.join('%5s'
            % classes[predicted[j]] for j in range(4)))

    测试集上计算正确率

    correct=0
    total=0
    for data in testloader:
        images,labels=data
        outputs=net(Variable(images))
        _,predicted=t.max(outputs.data,1)
        total +=labels.size(0)
        correct +=(predicted==labels).sum()
        
    print('1000张测试集中的准确率为: %d  %%' %(100* correct/total))
    1000张测试集中的准确率为: 52  %

    可以看到,在CIFAR-10上的正确率为52%,网络训练还是有些效果的。

  • 相关阅读:
    对 【Sequence to Sequence Learning with Neural Networks】的理解
    对 【Bidirectional LSTM-CRF Models for Sequence Tagging】的理解
    对 【Evaluation methods for unsupervised word embeddings 】 的理解
    对【XGBoost】的理解
    可变卷积Deforable ConvNet 迁移训练自己的数据集 MXNet框架 GPU版
    Ubuntu16 编译源码安装MXNet 可变卷积Deformable-ConvNets GPU版
    深度学习-超参数调整总结
    迁移学习介绍
    对 【BERT- Pre-training of Deep Bidirectional Transformers for Language Understanding】 的理解
    【图文】pycharm 修改自动导入包快捷键
  • 原文地址:https://www.cnblogs.com/keeptry/p/13943820.html
Copyright © 2011-2022 走看看