zoukankan      html  css  js  c++  java
  • 搭建hadoop集群

    hadoop的架构



    HDFS + MapReduce = Hadoop
    MapReduce = Mapper + Reducer

    hadoop的生态系统

    准备四个节点,系统版本为CentOS7.3
    192.168.135.170 NameNode,SecondaryNameNode,ResourceManager
    192.168.135.171 DataNode,NodeManager
    192.168.135.169 DataNode,NodeManager
    192.168.135.172 DataNode,NodeManager

    1、修改各节点hosts

    # vim /etc/hosts
    192.168.135.170     node1 master
    192.168.135.171     node2
    192.168.135.169     node3
    192.168.135.172     node4
    

    2、校对时间

    # yum install -y ntp ntpdate && ntpdate pool.ntp.org
    

    3、安装java环境

    # yum install -y java java-1.8.0-openjdk-devel
    # vim /etc/profile.d/java.sh
    export JAVA_HOME=/usr
    # source /etc/profile.d/java.sh
    

    4、修改各节点环境变量

    # vim /etc/profile.d/hadoop.sh
    export HADOOP_PREFIX=/bdapps/hadoop
    export PATH=$PATH:${HADOOP_PREFIX}/bin:${HADOOP_PREFIX}/sbin
    export HADOOP_YARN_HOME=${HADOOP_PREFIX}
    export HADOOP_MAPRED_HOME=${HADOOP_PREFIX}
    export HADOOP_COMMON_HOME=${HADOOP_PREFIX}
    export HADOOP_HDFS_HOME=${HADOOP_PREFIX}
    # source /etc/profile.d/hadoop.sh
    
    # scp /etc/profile.d/hadoop.sh node2:/etc/profile.d/hadoop.sh
    # scp /etc/profile.d/hadoop.sh node3:/etc/profile.d/hadoop.sh
    # scp /etc/profile.d/hadoop.sh node4:/etc/profile.d/hadoop.sh
    

    5、创建用户

    # useradd hadoop
    # echo 'hadoop' | passwd --stdin hadoop
    

    6、设置ssh互信

    # su - hadoop
    $ ssh-keygen
    $ ssh-copy-id node1
    $ ssh-copy-id node2
    $ ssh-copy-id node3
    $ ssh-copy-id node4
    

    7、配置master节点,即node1

    a、创建目录

    # mkdir -pv /bdapps
    # mkdir -pv /data/hadoop/hdfs/{nn,snn,dn}
    # chown hadoop.hadoop -R /data/hadoop/hdfs
    

    b、下载程序包

    # wget http://mirror.bit.edu.cn/apache/hadoop/common/hadoop-2.6.5/hadoop-2.6.5.tar.gz
    # tar xvf hadoop-2.6.5.tar.gz -C /bdapps/
    # cd /bdapps/
    # ln -sv hadoop-2.6.5/ hadoop
    # cd hadoop
    # mkdir logs
    # chmod g+w logs
    # chown -R hadoop.hadoop /bdapps/hadoop
    

    c、配置NameNode

    # cd etc/hadoop/
    # vim core-site.xml
    <configuration>
        <property>
            <name>fs.defaultFS</name>
            <value>hdfs://192.168.135.170:8020</value>
            <final>true</final>
        </property>
    </configuration>
    

    d、配置yarn

    # vim yarn-site.xml
    <configuration>
        <property>
            <name>yarn.resourcemanager.address</name>
            <value>192.168.135.170:8032</value>
        </property>
        <property>
            <name>yarn.resourcemanager.scheduler.address</name>
            <value>192.168.135.170:8030</value>
        </property>
        <property>
            <name>yarn.resourcemanager.resource-tracker.address</name>
            <value>192.168.135.170:8031</value>
        </property>
        <property>
            <name>yarn.resourcemanager.admin.address</name>
            <value>192.168.135.170:8033</value>
        </property> 
        <property>
            <name>yarn.resourcemanager.webapp.address</name>
            <value>192.168.135.170:8088</value>
        </property>
        <property>
            <name>yarn.nodemanager.aux-services</name>
            <value>mapreduce_shuffle</value>
        </property>
        <property>
            <name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name>
            <value>org.apache.hadoop.mapred.ShuffleHandler</value>
        </property>
        <property>
            <name>yarn.resourcemanager.scheduler.class</name>
            <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
        </property>
    </configuration>
    

    e、配置HDFS

    # vim hdfs-site.xml
    <configuration>
        <property>
            <name>dfs.replication</name>
            <value>2</value>
        </property>
        <property>
            <name>dfs.namenode.name.dir</name>
            <value>file:///data/hadoop/hdfs/nn</value>
        </property>
        <property>
            <name>dfs.datanode.data.dir</name>
            <value>file:///data/hadoop/hdfs/dn</value>
        </property>
        <property>
            <name>fs.checkpoint.dir</name>
            <value>file:///data/hadoop/hdfs/snn</value>
        </property>
        <property>
            <name>fs.checkpoint.edits.dir</name>
            <value>file:///data/hadoop/hdfs/snn</value>
        </property>		
    </configuration>
    

    f、配置MapReduce framework

    # cp mapred-site.xml.template mapred-site.xml
    # vim mapred-site.xml
    <configuration>
        <property>
            <name>mapreduce.framework.name</name>
            <value>yarn</value>
        </property>
    </configuration>
    

    g、定义slaves

    # vim slaves 
    192.168.135.171
    192.168.135.169
    192.168.135.172
    

    8、配置node2,node3,node4

    a、创建目录

    # mkdir -pv /bdapps
    # mkdir -pv /data/hadoop/hdfs/{nn,snn,dn}
    # chown hadoop.hadoop -R /data/hadoop/hdfs
    

    b、下载程序包

    # wget http://mirror.bit.edu.cn/apache/hadoop/common/hadoop-2.6.5/hadoop-2.6.5.tar.gz
    # tar xvf hadoop-2.6.5.tar.gz -C /bdapps/
    # cd /bdapps/
    # ln -sv hadoop-2.6.5/ hadoop
    # cd hadoop
    # mkdir logs
    # chmod g+w logs
    # chown -R hadoop.hadoop /bdapps/hadoop/logs
    

    c、从node1上复制配置文件

    # su - hadoop
    $ scp /bdapps/hadoop/etc/hadoop/* node2:/bdapps/hadoop/etc/hadoop/
    $ scp /bdapps/hadoop/etc/hadoop/* node3:/bdapps/hadoop/etc/hadoop/
    $ scp /bdapps/hadoop/etc/hadoop/* node4:/bdapps/hadoop/etc/hadoop/
    

    9、格式化HDFS,需要以hadoop用户身份在master节点上执行

    # su - hadoop
    $ hdfs --help
    http://hadoop.apache.org/docs/r2.6.5/hadoop-project-dist/hadoop-hdfs/HDFSCommands.html
    $ hdfs namenode -format
    common.Storage: Storage directory /data/hadoop/hdfs/nn has been successfully formatted.
    $ ll /data/hadoop/hdfs/nn/current/
    

    10、启动hadoop,有两种方式

    a、在各节点上分别启动各服务

    master节点需要启动HDFS的NameNode服务和yarn的ResourceManager服务。

    $ hadoop-daemon.sh start namenode
    $ hadoop-daemon.sh start secondarynamenode
    $ yarn-daemon.sh start resourcemanager
    

    各slave节点需要启动HDFS的DataNode服务和yarn的NodeManager服务。

    $ hadoop-daemon.sh start datanode
    $ yarn-daemon.sh start nodemanager
    

    b、在master节点上用脚本控制集群中的各节点启动

    $ start-dfs.sh
    Starting namenodes on [node1]
    node1: starting namenode, logging to /bdapps/hadoop/logs/hadoop-hadoop-namenode-node1.out
    192.168.135.172: starting datanode, logging to /bdapps/hadoop/logs/hadoop-hadoop-datanode-node4.out
    192.168.135.171: starting datanode, logging to /bdapps/hadoop/logs/hadoop-hadoop-datanode-node2.out
    192.168.135.169: starting datanode, logging to /bdapps/hadoop/logs/hadoop-hadoop-datanode-node3.out
    Starting secondary namenodes [0.0.0.0]
    The authenticity of host '0.0.0.0 (0.0.0.0)' can't be established.
    ECDSA key fingerprint is 38:28:13:e9:f0:e7:06:37:b9:3e:96:b5:ce:b9:06:fb.
    Are you sure you want to continue connecting (yes/no)? yes
    0.0.0.0: Warning: Permanently added '0.0.0.0' (ECDSA) to the list of known hosts.
    0.0.0.0: starting secondarynamenode, logging to /bdapps/hadoop/logs/hadoop-hadoop-secondarynamenode-node1.out
    

    尝试上传一个文件

    $ hdfs dfs -ls /
    $ hdfs dfs -mkdir /test
    $ hdfs dfs -put /etc/fstab /test/
    $ hdfs dfs -lsr /
    drwxr-xr-x   - hadoop supergroup          0 2017-04-06 02:19 /test
    -rw-r--r--   2 hadoop supergroup        541 2017-04-06 02:19 /test/fstab
    $ hdfs dfs -cat /test/fstab
    

    查看hdfs信息

    http://hadoop.apache.org/docs/r2.6.5/hadoop-project-dist/hadoop-hdfs/HDFSCommands.html#dfsadmin
    
    -report [-live] [-dead] [-decommissioning]:Reports basic filesystem information and statistics. Optional flags may be used to filter the list of displayed DataNodes.
    
    $ hdfs dfsadmin -report
    

    查看yarn信息
    hadoop2引入了yarn框架,对每个slave节点可以通过NodeManager进行管理,启动NodeManager进程后,即可加入集群。

    $ yarn node -list
    17/04/07 03:33:33 INFO client.RMProxy: Connecting to ResourceManager at /192.168.135.170:8032
    Total Nodes:3
             Node-Id       Node-State Node-Http-Address Number-of-Running-Containers
         node4:46842          RUNNING        node4:8042                            0
         node2:35812          RUNNING        node2:8042                            0
         node3:33280          RUNNING        node3:8042                            0
    
    $ start-yarn.sh
    starting yarn daemons
    starting resourcemanager, logging to /bdapps/hadoop/logs/yarn-hadoop-resourcemanager-node1.out
    192.168.135.172: starting nodemanager, logging to /bdapps/hadoop/logs/yarn-hadoop-nodemanager-node4.out
    192.168.135.171: starting nodemanager, logging to /bdapps/hadoop/logs/yarn-hadoop-nodemanager-node2.out
    192.168.135.169: starting nodemanager, logging to /bdapps/hadoop/logs/yarn-hadoop-nodemanager-node3.out
    
    在master节点上的进程
    $ jps
    2272 NameNode
    2849 ResourceManager
    2454 SecondaryNameNode
    3112 Jps
    
    在slave节点上的进程
    $ jps
    12192 Jps
    12086 NodeManager
    11935 DataNode
    

    11、查看WebUI

    $ netstat -tnlp
    
    a、HDFS的WebUI
    http://192.168.135.170:50070
    
    b、yarn的WebUI
    http://192.168.135.170:8088
    

    12、运行测试程序

    # su - hdfs
    $ cd /bdapps/hadoop/share/hadoop/mapreduce
    $ yarn jar hadoop-mapreduce-examples-2.6.5.jar 
    An example program must be given as the first argument.
    Valid program names are:
      aggregatewordcount: An Aggregate based map/reduce program that counts the words in the input files.
      aggregatewordhist: An Aggregate based map/reduce program that computes the histogram of the words in the input files.
      bbp: A map/reduce program that uses Bailey-Borwein-Plouffe to compute exact digits of Pi.
      dbcount: An example job that count the pageview counts from a database.
      distbbp: A map/reduce program that uses a BBP-type formula to compute exact bits of Pi.
      grep: A map/reduce program that counts the matches of a regex in the input.
      join: A job that effects a join over sorted, equally partitioned datasets
      multifilewc: A job that counts words from several files.
      pentomino: A map/reduce tile laying program to find solutions to pentomino problems.
      pi: A map/reduce program that estimates Pi using a quasi-Monte Carlo method.
      randomtextwriter: A map/reduce program that writes 10GB of random textual data per node.
      randomwriter: A map/reduce program that writes 10GB of random data per node.
      secondarysort: An example defining a secondary sort to the reduce.
      sort: A map/reduce program that sorts the data written by the random writer.
      sudoku: A sudoku solver.
      teragen: Generate data for the terasort
      terasort: Run the terasort
      teravalidate: Checking results of terasort
      wordcount: A map/reduce program that counts the words in the input files.
      wordmean: A map/reduce program that counts the average length of the words in the input files.
      wordmedian: A map/reduce program that counts the median length of the words in the input files.
      wordstandarddeviation: A map/reduce program that counts the standard deviation of the length of the words in the input files.
    
    $ yarn jar hadoop-mapreduce-examples-2.6.5.jar wordcount /test/fstab /test/fstab.out
    17/04/06 02:40:06 INFO client.RMProxy: Connecting to ResourceManager at /192.168.135.170:8032
    17/04/06 02:40:12 INFO input.FileInputFormat: Total input paths to process : 1
    17/04/06 02:40:12 INFO mapreduce.JobSubmitter: number of splits:1
    17/04/06 02:40:13 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1491416651117_0001
    17/04/06 02:40:14 INFO impl.YarnClientImpl: Submitted application application_1491416651117_0001
    17/04/06 02:40:17 INFO mapreduce.Job: The url to track the job: http://node1:8088/proxy/application_1491416651117_0001/
    17/04/06 02:40:17 INFO mapreduce.Job: Running job: job_1491416651117_0001
    17/04/06 02:40:47 INFO mapreduce.Job: Job job_1491416651117_0001 running in uber mode : false
    17/04/06 02:40:47 INFO mapreduce.Job:  map 0% reduce 0%
    17/04/06 02:41:19 INFO mapreduce.Job:  map 100% reduce 0%
    17/04/06 02:41:33 INFO mapreduce.Job:  map 100% reduce 100%
    17/04/06 02:41:34 INFO mapreduce.Job: Job job_1491416651117_0001 completed successfully
    17/04/06 02:41:34 INFO mapreduce.Job: Counters: 49
    	File System Counters
    		FILE: Number of bytes read=585
    		FILE: Number of bytes written=215501
    		FILE: Number of read operations=0
    		FILE: Number of large read operations=0
    		FILE: Number of write operations=0
    		HDFS: Number of bytes read=644
    		HDFS: Number of bytes written=419
    		HDFS: Number of read operations=6
    		HDFS: Number of large read operations=0
    		HDFS: Number of write operations=2
    	Job Counters 
    		Launched map tasks=1
    		Launched reduce tasks=1
    		Data-local map tasks=1
    		Total time spent by all maps in occupied slots (ms)=29830
    		Total time spent by all reduces in occupied slots (ms)=10691
    		Total time spent by all map tasks (ms)=29830
    		Total time spent by all reduce tasks (ms)=10691
    		Total vcore-milliseconds taken by all map tasks=29830
    		Total vcore-milliseconds taken by all reduce tasks=10691
    		Total megabyte-milliseconds taken by all map tasks=30545920
    		Total megabyte-milliseconds taken by all reduce tasks=10947584
    	Map-Reduce Framework
    		Map input records=12
    		Map output records=60
    		Map output bytes=648
    		Map output materialized bytes=585
    		Input split bytes=103
    		Combine input records=60
    		Combine output records=40
    		Reduce input groups=40
    		Reduce shuffle bytes=585
    		Reduce input records=40
    		Reduce output records=40
    		Spilled Records=80
    		Shuffled Maps =1
    		Failed Shuffles=0
    		Merged Map outputs=1
    		GC time elapsed (ms)=281
    		CPU time spent (ms)=8640
    		Physical memory (bytes) snapshot=291602432
    		Virtual memory (bytes) snapshot=4209983488
    		Total committed heap usage (bytes)=149688320
    	Shuffle Errors
    		BAD_ID=0
    		CONNECTION=0
    		IO_ERROR=0
    		WRONG_LENGTH=0
    		WRONG_MAP=0
    		WRONG_REDUCE=0
    	File Input Format Counters 
    		Bytes Read=541
    	File Output Format Counters 
    		Bytes Written=419
    
    $ hdfs dfs -ls /test/fstab.out
    Found 2 items
    -rw-r--r--   2 hadoop supergroup          0 2017-04-06 02:41 /test/fstab.out/_SUCCESS
    -rw-r--r--   2 hadoop supergroup        419 2017-04-06 02:41 /test/fstab.out/part-r-00000
    
    $ hdfs dfs -cat /test/fstab.out/part-r-00000
    #	7
    '/dev/disk'	1
    /	1
    /boot	1
    /dev/mapper/cl-home	1
    /dev/mapper/cl-root	1
    /dev/mapper/cl-swap	1
    /etc/fstab	1
    /home	1
    0	8
    01:15:45	1
    11	1
    2017	1
    Accessible	1
    Created	1
    Mar	1
    Sat	1
    See	1
    UUID=b76be3cf-613c-478a-ab8b-d1eaa67a061a	1
    anaconda	1
    and/or	1
    are	1
    blkid(8)	1
    by	2
    defaults	4
    filesystems,	1
    findfs(8),	1
    for	1
    fstab(5),	1
    info	1
    maintained	1
    man	1
    more	1
    mount(8)	1
    on	1
    pages	1
    reference,	1
    swap	2
    under	1
    xfs	3
    




  • 相关阅读:
    使用greenDAO遇到的问题
    使用greenDAO生成DAO代码
    Spring中Bean的生命周期
    视频弹幕开源库
    最简MacOs10.8安装
    apache-virtual host
    带删除的EditText
    替换默认debug.keystore文件
    Intellij格式化java和xml
    【数据结构】之二叉树的java实现
  • 原文地址:https://www.cnblogs.com/keithtt/p/6680738.html
Copyright © 2011-2022 走看看