zoukankan      html  css  js  c++  java
  • Keras版Faster-RCNN代码学习(IOU,RPN)1

    最近开始使用Keras来做深度学习,发现模型搭建相较于MXnet, Caffe等确实比较方便,适合于新手练手,于是找来了目标检测经典的模型Faster-RCNN的keras代码来练练手,代码的主题部分转自知乎专栏Learning Machine,作者张潇捷,链接如下: 
    keras版faster-rcnn算法详解(1.RPN计算) 
    keras版faster-rcnn算法详解 (2.roi计算及其他)

    我再对代码中loss的计算,config的设置等细节进行学习 
    Keras版Faster-RCNN代码学习(IOU,RPN)1 
    Keras版Faster-RCNN代码学习(Batch Normalization)2 
    Keras版Faster-RCNN代码学习(loss,xml解析)3 
    Keras版Faster-RCNN代码学习(roipooling resnet/vgg)4 
    Keras版Faster-RCNN代码学习(measure_map,train/test)5

    config.py

    from keras import backend as K
    import math
    
    class Config:
    
        def __init__(self):
    
            self.verbose = True
    
            self.network = 'resnet50'
    
            # setting for data augmentation
            self.use_horizontal_flips = False
            self.use_vertical_flips = False
            self.rot_90 = False
    
            # anchor box scales
            self.anchor_box_scales = [128, 256, 512]
    
            # anchor box ratios
            self.anchor_box_ratios = [[1, 1], [1./math.sqrt(2), 2./math.sqrt(2)], [2./math.sqrt(2), 1./math.sqrt(2)]]
    
            # size to resize the smallest side of the image
            self.im_size = 600
    
            # image channel-wise mean to subtract
            self.img_channel_mean = [103.939, 116.779, 123.68]
            self.img_scaling_factor = 1.0
    
            # number of ROIs at once
            self.num_rois = 4
    
            # stride at the RPN (this depends on the network configuration)
            self.rpn_stride = 16
    
            self.balanced_classes = False
    
            # scaling the stdev
            self.std_scaling = 4.0
            self.classifier_regr_std = [8.0, 8.0, 4.0, 4.0]
    
            # overlaps for RPN
            self.rpn_min_overlap = 0.3
            self.rpn_max_overlap = 0.7
    
            # overlaps for classifier ROIs
            self.classifier_min_overlap = 0.1
            self.classifier_max_overlap = 0.5
    
            # placeholder for the class mapping, automatically generated by the parser
            self.class_mapping = None
    
            #location of pretrained weights for the base network 
            # weight files can be found at:
            # https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_th_dim_ordering_th_kernels_notop.h5
            # https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5
    
            self.model_path = 'model_frcnn.vgg.hdf5'
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59

    对代码所需要的参数进行配置

    data_generators.py

    import cv2
    import numpy as np
    import copy
    
    #传递图像参数,增广配置参数,是否进行图像增广
    def augment(img_data, config, augment=True):
        assert 'filepath' in img_data
        assert 'bboxes' in img_data
        assert 'width' in img_data
        assert 'height' in img_data
    
        img_data_aug = copy.deepcopy(img_data)
    
        img = cv2.imread(img_data_aug['filepath'])
    
        if augment:
            rows, cols = img.shape[:2]
            #图像水平翻转,对应的bbox的对角坐标也进行水平翻转,翻转概率为50%
            if config.use_horizontal_flips and np.random.randint(0, 2) == 0:
                img = cv2.flip(img, 1)
                for bbox in img_data_aug['bboxes']:
                    x1 = bbox['x1']
                    x2 = bbox['x2']
                    bbox['x2'] = cols - x1
                    bbox['x1'] = cols - x2
            #图像垂直翻转,对应的bbox的对角坐标也进行垂直翻转,翻转概率为50%
            if config.use_vertical_flips and np.random.randint(0, 2) == 0:
                img = cv2.flip(img, 0)
                for bbox in img_data_aug['bboxes']:
                    y1 = bbox['y1']
                    y2 = bbox['y2']
                    bbox['y2'] = rows - y1
                    bbox['y1'] = rows - y2
            #图像按90度旋转,对应的bbox的对角坐标也进行90度旋转,旋转概率为50%
            if config.rot_90:
                angle = np.random.choice([0,90,180,270],1)[0]
                if angle == 270:
                    img = np.transpose(img, (1,0,2))
                    img = cv2.flip(img, 0)
                elif angle == 180:
                    img = cv2.flip(img, -1)
                elif angle == 90:
                    img = np.transpose(img, (1,0,2))
                    img = cv2.flip(img, 1)
                elif angle == 0:
                    pass
    
                for bbox in img_data_aug['bboxes']:
                    x1 = bbox['x1']
                    x2 = bbox['x2']
                    y1 = bbox['y1']
                    y2 = bbox['y2']
                    if angle == 270:
                        bbox['x1'] = y1
                        bbox['x2'] = y2
                        bbox['y1'] = cols - x2
                        bbox['y2'] = cols - x1
                    elif angle == 180:
                        bbox['x2'] = cols - x1
                        bbox['x1'] = cols - x2
                        bbox['y2'] = rows - y1
                        bbox['y1'] = rows - y2
                    elif angle == 90:
                        bbox['x1'] = rows - y2
                        bbox['x2'] = rows - y1
                        bbox['y1'] = x1
                        bbox['y2'] = x2        
                    elif angle == 0:
                        pass
    
        img_data_aug['width'] = img.shape[1]
        img_data_aug['height'] = img.shape[0]
        return img_data_aug, img
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74

    关于坐标计算,还是有点绕的,可通过矩阵计算或者画图描述(画图描述比较清晰,对应对角坐标会发生变化,对角坐标为一个最小的,一个最大的)如[x1,y1,x2,y2],则x1 < x2,y1 < y2,面积为(x2-x1)(y2-y1),所以对角坐标翻转后的坐标并不是对角坐标,需要调整,即找到最小的x,y和最大的x,y。如[x1,y1,x2,y2],则x1 < x2,y1 < y2,进行水平翻转后,cols - x2 < cols - x1,y1 < y2,重新组合的坐标为[cols - x2,y1,cols - x1,y2],其他同理。

    IOU,RPN计算

    from __future__ import absolute_import
    import numpy as np
    import cv2
    import random
    import copy
    from . import data_augment
    import threading
    import itertools
    
    #并集
    def union(au, bu, area_intersection):
        area_a = (au[2] - au[0]) * (au[3] - au[1])
        area_b = (bu[2] - bu[0]) * (bu[3] - bu[1])
        area_union = area_a + area_b - area_intersection
        return area_union
    
    #交集
    def intersection(ai, bi):
        x = max(ai[0], bi[0])
        y = max(ai[1], bi[1])
        w = min(ai[2], bi[2]) - x
        h = min(ai[3], bi[3]) - y
        if w < 0 or h < 0:
            return 0
        return w*h
    
    #交并比
    def iou(a, b):
        # a and b should be (x1,y1,x2,y2)
    
        if a[0] >= a[2] or a[1] >= a[3] or b[0] >= b[2] or b[1] >= b[3]:
            return 0.0
    
        area_i = intersection(a, b)
        area_u = union(a, b, area_i)
    
        return float(area_i) / float(area_u + 1e-6)
    
    #图像resize
    def get_new_img_size(width, height, img_min_side=600):
        if width <= height:
            f = float(img_min_side) / width
            resized_height = int(f * height)
            resized_width = img_min_side
        else:
            f = float(img_min_side) / height
            resized_width = int(f * width)
            resized_height = img_min_side
    
        return resized_width, resized_height
    
    
    class SampleSelector:
        def __init__(self, class_count):
            # ignore classes that have zero samples
            self.classes = [b for b in class_count.keys() if class_count[b] > 0]
            self.class_cycle = itertools.cycle(self.classes)
            self.curr_class = next(self.class_cycle)
    
        def skip_sample_for_balanced_class(self, img_data):
    
            class_in_img = False
    
            for bbox in img_data['bboxes']:
    
                cls_name = bbox['class']
    
                if cls_name == self.curr_class:
                    class_in_img = True
                    self.curr_class = next(self.class_cycle)
                    break
    
            if class_in_img:
                return False
            else:
                return True
    
    
    def calc_rpn(C, img_data, width, height, resized_width, resized_height, img_length_calc_function):
    
        downscale = float(C.rpn_stride)
        anchor_sizes = C.anchor_box_scales
        anchor_ratios = C.anchor_box_ratios
        num_anchors = len(anchor_sizes) * len(anchor_ratios)    
    
        # calculate the output map size based on the network architecture
    
        (output_width, output_height) = img_length_calc_function(resized_width, resized_height)
    
        n_anchratios = len(anchor_ratios)
    
        # initialise empty output objectives
        y_rpn_overlap = np.zeros((output_height, output_width, num_anchors))
        y_is_box_valid = np.zeros((output_height, output_width, num_anchors))
        y_rpn_regr = np.zeros((output_height, output_width, num_anchors * 4))
    
        num_bboxes = len(img_data['bboxes'])
    
        num_anchors_for_bbox = np.zeros(num_bboxes).astype(int)
        best_anchor_for_bbox = -1*np.ones((num_bboxes, 4)).astype(int)
        best_iou_for_bbox = np.zeros(num_bboxes).astype(np.float32)
        best_x_for_bbox = np.zeros((num_bboxes, 4)).astype(int)
        best_dx_for_bbox = np.zeros((num_bboxes, 4)).astype(np.float32)
    
        # get the GT box coordinates, and resize to account for image resizing
        gta = np.zeros((num_bboxes, 4))
        for bbox_num, bbox in enumerate(img_data['bboxes']):
            # get the GT box coordinates, and resize to account for image resizing
            gta[bbox_num, 0] = bbox['x1'] * (resized_width / float(width))
            gta[bbox_num, 1] = bbox['x2'] * (resized_width / float(width))
            gta[bbox_num, 2] = bbox['y1'] * (resized_height / float(height))
            gta[bbox_num, 3] = bbox['y2'] * (resized_height / float(height))
    
        # rpn ground truth
    
        for anchor_size_idx in range(len(anchor_sizes)):
            for anchor_ratio_idx in range(n_anchratios):
                anchor_x = anchor_sizes[anchor_size_idx] * anchor_ratios[anchor_ratio_idx][0]
                anchor_y = anchor_sizes[anchor_size_idx] * anchor_ratios[anchor_ratio_idx][1]   
    
                for ix in range(output_width):                  
                    # x-coordinates of the current anchor box   
                    x1_anc = downscale * (ix + 0.5) - anchor_x / 2
                    x2_anc = downscale * (ix + 0.5) + anchor_x / 2  
    
                    # ignore boxes that go across image boundaries                  
                    if x1_anc < 0 or x2_anc > resized_
                        continue
    
                    for jy in range(output_height):
    
                        # y-coordinates of the current anchor box
                        y1_anc = downscale * (jy + 0.5) - anchor_y / 2
                        y2_anc = downscale * (jy + 0.5) + anchor_y / 2
    
                        # ignore boxes that go across image boundaries
                        if y1_anc < 0 or y2_anc > resized_height:
                            continue
    
                        # bbox_type indicates whether an anchor should be a target 
                        bbox_type = 'neg'
    
                        # this is the best IOU for the (x,y) coord and the current anchor
                        # note that this is different from the best IOU for a GT bbox
                        best_iou_for_loc = 0.0
    
                        for bbox_num in range(num_bboxes):
    
                            # get IOU of the current GT box and the current anchor box
                            curr_iou = iou([gta[bbox_num, 0], gta[bbox_num, 2], gta[bbox_num, 1], gta[bbox_num, 3]], [x1_anc, y1_anc, x2_anc, y2_anc])
                            # calculate the regression targets if they will be needed
                            if curr_iou > best_iou_for_bbox[bbox_num] or curr_iou > C.rpn_max_overlap:
                                cx = (gta[bbox_num, 0] + gta[bbox_num, 1]) / 2.0
                                cy = (gta[bbox_num, 2] + gta[bbox_num, 3]) / 2.0
                                cxa = (x1_anc + x2_anc)/2.0
                                cya = (y1_anc + y2_anc)/2.0
    
                                tx = (cx - cxa) / (x2_anc - x1_anc)
                                ty = (cy - cya) / (y2_anc - y1_anc)
                                tw = np.log((gta[bbox_num, 1] - gta[bbox_num, 0]) / (x2_anc - x1_anc))
                                th = np.log((gta[bbox_num, 3] - gta[bbox_num, 2]) / (y2_anc - y1_anc))
    
                            if img_data['bboxes'][bbox_num]['class'] != 'bg':
    
                                # all GT boxes should be mapped to an anchor box, so we keep track of which anchor box was best
                                if curr_iou > best_iou_for_bbox[bbox_num]:
                                    best_anchor_for_bbox[bbox_num] = [jy, ix, anchor_ratio_idx, anchor_size_idx]
                                    best_iou_for_bbox[bbox_num] = curr_iou
                                    best_x_for_bbox[bbox_num,:] = [x1_anc, x2_anc, y1_anc, y2_anc]
                                    best_dx_for_bbox[bbox_num,:] = [tx, ty, tw, th]
    
                                # we set the anchor to positive if the IOU is >0.7 (it does not matter if there was another better box, it just indicates overlap)
                                if curr_iou > C.rpn_max_overlap:
                                    bbox_type = 'pos'
                                    num_anchors_for_bbox[bbox_num] += 1
                                    # we update the regression layer target if this IOU is the best for the current (x,y) and anchor position
                                    if curr_iou > best_iou_for_loc:
                                        best_iou_for_loc = curr_iou
                                        best_regr = (tx, ty, tw, th)
    
                                # if the IOU is >0.3 and <0.7, it is ambiguous and no included in the objective
                                if C.rpn_min_overlap < curr_iou < C.rpn_max_overlap:
                                    # gray zone between neg and pos
                                    if bbox_type != 'pos':
                                        bbox_type = 'neutral'
    
                        # turn on or off outputs depending on IOUs
                        if bbox_type == 'neg':
                            y_is_box_valid[jy, ix, anchor_ratio_idx + n_anchratios * anchor_size_idx] = 1
                            y_rpn_overlap[jy, ix, anchor_ratio_idx + n_anchratios * anchor_size_idx] = 0
                        elif bbox_type == 'neutral':
                            y_is_box_valid[jy, ix, anchor_ratio_idx + n_anchratios * anchor_size_idx] = 0
                            y_rpn_overlap[jy, ix, anchor_ratio_idx + n_anchratios * anchor_size_idx] = 0
                        elif bbox_type == 'pos':
                            y_is_box_valid[jy, ix, anchor_ratio_idx + n_anchratios * anchor_size_idx] = 1
                            y_rpn_overlap[jy, ix, anchor_ratio_idx + n_anchratios * anchor_size_idx] = 1
                            start = 4 * (anchor_ratio_idx + n_anchratios * anchor_size_idx)
                            y_rpn_regr[jy, ix, start:start+4] = best_regr
    
        # we ensure that every bbox has at least one positive RPN region
    
        for idx in range(num_anchors_for_bbox.shape[0]):
            if num_anchors_for_bbox[idx] == 0:
                # no box with an IOU greater than zero ...
                if best_anchor_for_bbox[idx, 0] == -1:
                    continue
                y_is_box_valid[
                    best_anchor_for_bbox[idx,0], best_anchor_for_bbox[idx,1], best_anchor_for_bbox[idx,2] + n_anchratios *
                    best_anchor_for_bbox[idx,3]] = 1
                y_rpn_overlap[
                    best_anchor_for_bbox[idx,0], best_anchor_for_bbox[idx,1], best_anchor_for_bbox[idx,2] + n_anchratios *
                    best_anchor_for_bbox[idx,3]] = 1
                start = 4 * (best_anchor_for_bbox[idx,2] + n_anchratios * best_anchor_for_bbox[idx,3])
                y_rpn_regr[
                    best_anchor_for_bbox[idx,0], best_anchor_for_bbox[idx,1], start:start+4] = best_dx_for_bbox[idx, :]
    
        y_rpn_overlap = np.transpose(y_rpn_overlap, (2, 0, 1))
        y_rpn_overlap = np.expand_dims(y_rpn_overlap, axis=0)
    
        y_is_box_valid = np.transpose(y_is_box_valid, (2, 0, 1))
        y_is_box_valid = np.expand_dims(y_is_box_valid, axis=0)
    
        y_rpn_regr = np.transpose(y_rpn_regr, (2, 0, 1))
        y_rpn_regr = np.expand_dims(y_rpn_regr, axis=0)
    
        pos_locs = np.where(np.logical_and(y_rpn_overlap[0, :, :, :] == 1, y_is_box_valid[0, :, :, :] == 1))
        neg_locs = np.where(np.logical_and(y_rpn_overlap[0, :, :, :] == 0, y_is_box_valid[0, :, :, :] == 1))
    
        num_pos = len(pos_locs[0])
    
        # one issue is that the RPN has many more negative than positive regions, so we turn off some of the negative
        # regions. We also limit it to 256 regions.
        num_regions = 256
    
        if len(pos_locs[0]) > num_regions/2:
            val_locs = random.sample(range(len(pos_locs[0])), len(pos_locs[0]) - num_regions/2)
            y_is_box_valid[0, pos_locs[0][val_locs], pos_locs[1][val_locs], pos_locs[2][val_locs]] = 0
            num_pos = num_regions/2
    
        if len(neg_locs[0]) + num_pos > num_regions:
            val_locs = random.sample(range(len(neg_locs[0])), len(neg_locs[0]) - num_pos)
            y_is_box_valid[0, neg_locs[0][val_locs], neg_locs[1][val_locs], neg_locs[2][val_locs]] = 0
    
        y_rpn_cls = np.concatenate([y_is_box_valid, y_rpn_overlap], axis=1)
        y_rpn_regr = np.concatenate([np.repeat(y_rpn_overlap, 4, axis=1), y_rpn_regr], axis=1)
    
        return np.copy(y_rpn_cls), np.copy(y_rpn_regr)
    
    
    class threadsafe_iter:
        """Takes an iterator/generator and makes it thread-safe by
        serializing call to the `next` method of given iterator/generator.
        """
        def __init__(self, it):
            self.it = it
            self.lock = threading.Lock()
    
        def __iter__(self):
            return self
    
        def next(self):
            with self.lock:
                return next(self.it)        
    
    
    def threadsafe_generator(f):
        """A decorator that takes a generator function and makes it thread-safe.
        """
        def g(*a, **kw):
            return threadsafe_iter(f(*a, **kw))
        return g
    
    def get_anchor_gt(all_img_data, class_count, C, img_length_calc_function, backend, mode='train'):
    
        # The following line is not useful with Python 3.5, it is kept for the legacy
        # all_img_data = sorted(all_img_data)
    
        sample_selector = SampleSelector(class_count)
    
        while True:
            if mode == 'train':
                np.random.shuffle(all_img_data)
    
            for img_data in all_img_data:
                try:
    
                    if C.balanced_classes and sample_selector.skip_sample_for_balanced_class(img_data):
                        continue
    
                    # read in image, and optionally add augmentation
    
                    if mode == 'train':
                        img_data_aug, x_img = data_augment.augment(img_data, C, augment=True)
                    else:
                        img_data_aug, x_img = data_augment.augment(img_data, C, augment=False)
    
                    (width, height) = (img_data_aug['width'], img_data_aug['height'])
                    (rows, cols, _) = x_img.shape
    
                    assert cols == width
                    assert rows == height
    
                    # get image dimensions for resizing
                    (resized_width, resized_height) = get_new_img_size(width, height, C.im_size)
    
                    # resize the image so that smalles side is length = 600px
                    x_img = cv2.resize(x_img, (resized_width, resized_height), interpolation=cv2.INTER_CUBIC)
    
                    try:
                        y_rpn_cls, y_rpn_regr = calc_rpn(C, img_data_aug, width, height, resized_width, resized_height, img_length_calc_function)
                    except:
                        continue
    
                    # Zero-center by mean pixel, and preprocess image
    
                    x_img = x_img[:,:, (2, 1, 0)]  # BGR -> RGB
                    x_img = x_img.astype(np.float32)
                    x_img[:, :, 0] -= C.img_channel_mean[0]
                    x_img[:, :, 1] -= C.img_channel_mean[1]
                    x_img[:, :, 2] -= C.img_channel_mean[2]
                    x_img /= C.img_scaling_factor
    
                    x_img = np.transpose(x_img, (2, 0, 1))
                    x_img = np.expand_dims(x_img, axis=0)
    
                    y_rpn_regr[:, y_rpn_regr.shape[1]//2:, :, :] *= C.std_scaling
    
                    if backend == 'tf':
                        x_img = np.transpose(x_img, (0, 2, 3, 1))
                        y_rpn_cls = np.transpose(y_rpn_cls, (0, 2, 3, 1))
                        y_rpn_regr = np.transpose(y_rpn_regr, (0, 2, 3, 1))
    
                    yield np.copy(x_img), [np.copy(y_rpn_cls), np.copy(y_rpn_regr)], img_data_aug
    
                except Exception as e:
                    print(e)
                    continue
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321
    • 322
    • 323
    • 324
    • 325
    • 326
    • 327
    • 328
    • 329
    • 330
    • 331
    • 332
    • 333
    • 334
    • 335
    • 336
    • 337
    • 338

    关于RPN计算部分,参考keras版faster-rcnn算法详解(1.RPN计算) 

  • 相关阅读:
    502 IPO 上市
    501 Find Mode in Binary Search Tree
    500 Keyboard Row 键盘行
    498 Diagonal Traverse 对角线遍历
    Django_modelform组件
    Django_RBAC_demo2 升级版权限控制组件
    Django admin组件源码流程
    Django_rbac_demo 权限控制组件框架模型
    Django_重装系统后无法使用 sqlite 数据库报错:com.intellij.execution.ExecutionException: Exception in thread "main" java.lang.ClassNotFoundException: org.sqlite.JDBC
    python_面向对象小试题
  • 原文地址:https://www.cnblogs.com/kekexuanxaun/p/9459368.html
Copyright © 2011-2022 走看看