zoukankan      html  css  js  c++  java
  • 音乐流派分类

    1.https://www.jiqizhixin.com/articles/2019-01-11-25(讲解)

    2.https://gist.github.com/parulnith/7f8c174e6ac099e86f0495d3d9a4c01e#file-music_genre_classification-ipynb(源码)

    # feature extractoring and preprocessing data
    import librosa
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import os
    from PIL import Image
    import pathlib
    import csv
    # Preprocessing
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import LabelEncoder, StandardScaler
    #Keras
    import keras
    import warnings
    from keras import models
    from keras import layers
    from keras.models import load_model
    
    warnings.filterwarnings('ignore')
    cmap = plt.get_cmap('inferno')
    plt.figure(figsize=(10,10))
    # genres = 'blues classical country disco hiphop jazz metal pop reggae rock'.split()
    # #转换成对应的谱图,保存到imag_data文件夹里面
    # for g in genres:
    #     pathlib.Path(f'img_data/{g}').mkdir(parents=True, exist_ok=True)     
    #     for filename in os.listdir(f'./music/{g}'):
    #         songname = f'./music/{g}/{filename}'
    #         y, sr = librosa.load(songname, mono=True, duration=5)
    #         plt.specgram(y, NFFT=2048, Fs=2, Fc=0, noverlap=128, cmap=cmap, sides='default', mode='default', scale='dB');
    #         plt.axis('off')
    #         plt.savefig(f'img_data/{g}/{filename[:-3].replace(".", "")}.png')
    #         plt.clf()
    
    
    
     #提取各个音频的特征
    # header = 'filename chroma_stft rmse spectral_centroid spectral_bandwidth rolloff zero_crossing_rate'
    # for i in range(1, 21):
    #     header += f' mfcc{i}'
    # header += ' label'
    # header = header.split()
    
    
    # file = open('data.csv', 'w', newline='')
    # with file:
    #     writer = csv.writer(file)
    #     writer.writerow(header)
    # genres = 'blues classical country disco hiphop jazz metal pop reggae rock'.split()
    # for g in genres:
    #     for filename in os.listdir(f'./music/{g}'):
    #         songname = f'./music/{g}/{filename}'
    #         y, sr = librosa.load(songname, mono=True, duration=30)
    #         chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr)
    #         rmse=librosa.feature.rms(y=y)
    #         spec_cent = librosa.feature.spectral_centroid(y=y, sr=sr)
    #         spec_bw = librosa.feature.spectral_bandwidth(y=y, sr=sr)
    #         rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)
    #         zcr = librosa.feature.zero_crossing_rate(y)
    #         mfcc = librosa.feature.mfcc(y=y, sr=sr)
    #         to_append = f'{filename} {np.mean(chroma_stft)} {np.mean(rmse)} {np.mean(spec_cent)} {np.mean(spec_bw)} {np.mean(rolloff)} {np.mean(zcr)}'    
    #         for e in mfcc:
    #             to_append += f' {np.mean(e)}'
    #         to_append += f' {g}'
    #         file = open('data.csv', 'a', newline='')
    #         with file:
    #             writer = csv.writer(file)
    #             writer.writerow(to_append.split())
    
    
    #用keras训练模型
    data = pd.read_csv('data.csv')
    genre_list = data.iloc[:, -1]
    encoder = LabelEncoder()
    #将标签y进行数字化表示(0-9)
    y = encoder.fit_transform(genre_list)
    scaler = StandardScaler()
    #标准化数据特征
    X = scaler.fit_transform(np.array(data.iloc[:, 1:-1], dtype = float))
    #切分数据集
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    
    # model = models.Sequential()
    # model.add(layers.Dense(256, activation='relu', input_shape=(X_train.shape[1],)))
    # model.add(layers.Dense(128, activation='relu'))
    # model.add(layers.Dense(64, activation='relu'))
    # model.add(layers.Dense(10, activation='softmax'))
    # model.compile(optimizer='adam',
    #               loss='sparse_categorical_crossentropy',
    #               metrics=['accuracy'])
    # history = model.fit(X_train,
    #                     y_train,
    #                     epochs=20,
    #                     batch_size=128)
    # test_loss, test_acc = model.evaluate(X_test,y_test)
    # print()
    # print('test_acc: ',test_acc)
    # print('test_loss: ',test_loss)
    # model.save('music_model.h5')
    model = load_model('music_model.h5')
    
    #验证:
    predictions = model.predict(X_test)
    acc=0
    sum=len(predictions)
    for i in range(len(predictions)):
        if(np.argmax(predictions[i])==y_test[i]):
            acc=acc+1
        print("预测:",np.argmax(predictions[0]),"真实:",y_test[i])
    print("正确率:",acc/sum)
  • 相关阅读:
    MySQL手册
    字符串置换
    Java实现三角形计数
    Java实现求二叉树的路径和
    Excel催化剂开源第46波-按行列排列多个图形技术要点
    Excel催化剂开源第44波-窗体在Show模式下受Excel操作影响变为最小化解决方式
    Excel催化剂开源第45波-按原图大小导出图片
    个人永久性免费-Excel催化剂功能第105波-批量调整不规范的图形对象到单一单元格内存储
    Excel催化剂开源第42波-与金融大数据TuShare对接实现零门槛零代码获取数据
    Excel催化剂开源第43波-Excel选择对象Selection在.Net开发中的使用
  • 原文地址:https://www.cnblogs.com/kekexxr/p/12859383.html
Copyright © 2011-2022 走看看