16.1 介绍
UART(Universal Asynchronous Receiver Transmitter),通用异步收发器,用来传输穿行数据时
UART 之间以全双工方式传输数据,连线方法只有 3 根电线:TXD 用于发送数据,RXD 用于接收数据,GND用于给双方提供参考地。
串口数据线以 “位”为最小单位传输数据。帧(frame)由具有完整意义的、不可分割的若干位组成,它包含开始位、数据位、校验位和停止位。
UART 使用标准的 TTL/CMOS 逻辑电平(0~5V、0~3.3V、0~2.5V 或 0~1.8V)来表示数据,高电平表示1,低电平表示0。为了增强数据的抗干扰能力、提高传输长度,通常将 TLL/CMOS 逻辑电平转换位 RS-232 逻辑电平,3~12V 表示0,-3~-12V 表示1。
数据的传输流程如下:
- 平时数据处于 空闲 状态
- 当要发送数据时,UART 改变 TXD 数据线的状态(变为 0 状态)并维持 1 位的时间,这样接收方检测到开始位后,再等待 1.5 位的时间就开始一位一位地检测数据线的状态得到所传输的数据
- UART 一帧中可以由5、6、7或8位的数据,发送方一位一位的改变数据线的状态将它们发送出去,首先发送最低位
- 如果使用校验功能,UART 在发送完数据位后,还要发送一个校验位。有两种校验方法:奇校验、偶校验——数据位连同校验位中,“1”的数目等于奇数或偶数
- 最后,发送停止位,数据线恢复到“空闲”状态(1状态)。停止位的长度有3种:1位、1.5位、2位
16.2 S3C2440 UART 特性
S3C2440 UART 中有3个独立的通道,每个通道都可以工作于中断模式或DMA模式,即UART可以发出中断或DMA请求以便在UART、CPU 间传输数据。UART 由波特率发生器、发送器、接收器和控制逻辑组成
使用系统时钟时,UART的波特率可以达到 115.2Kbit/s,若使用 UEXTCLK 引脚提供的外部时钟,则可以达到更高的波特率。波特率可以通过编程进行控制。
S3C2440 UART 的 FIFO 深度位64.。发送数据时,CPU 先将数据写入发送 FIFO 中,然后 UART 会自动将 FIFO 中的数据复制到“发送移位器”(Transmit Shifter)中,发送移位器将数据一位一位的发送到 TXDn 数据线上(根据设定的格式,插入开始位、校验位和停止位)。接收数据时,“接收移位器”(Receive Shifter)将RXDn 数据线上的数据一位一位接收进来,然后复制到接收 FIFO 中,CPU 即可以从中读取数据。
S3C2440 UART 的每个通道支持的停止位有 1 位、2位,数据位有5、6、7、8位,支持校验功能,另外还有红外发送/接收功能。
UART 结构图如下:
其他说明见芯片手册第11章节
16.3 程序
uart.lds
1 SECTIONS { 2 . = 0x30000000; 3 .text : { *(.text) } 4 .rodata ALIGN(4) : {*(.rodata)} 5 .data ALIGN(4) : { *(.data) } 6 .bss ALIGN(4) : { *(.bss) *(COMMON) } 7 }
s3c24xx.h
1 /* WOTCH DOG register */ 2 #define WTCON (*(volatile unsigned long *)0x53000000) 3 4 /* SDRAM regisers */ 5 #define MEM_CTL_BASE 0x48000000 6 #define SDRAM_BASE 0x30000000 7 8 /* NAND Flash registers */ 9 #define NFCONF (*(volatile unsigned int *)0x4e000000) 10 #define NFCMD (*(volatile unsigned char *)0x4e000004) 11 #define NFADDR (*(volatile unsigned char *)0x4e000008) 12 #define NFDATA (*(volatile unsigned char *)0x4e00000c) 13 #define NFSTAT (*(volatile unsigned char *)0x4e000010) 14 15 /*GPIO registers*/ 16 #define GPBCON (*(volatile unsigned long *)0x56000010) 17 #define GPBDAT (*(volatile unsigned long *)0x56000014) 18 19 #define GPFCON (*(volatile unsigned long *)0x56000050) 20 #define GPFDAT (*(volatile unsigned long *)0x56000054) 21 #define GPFUP (*(volatile unsigned long *)0x56000058) 22 23 #define GPGCON (*(volatile unsigned long *)0x56000060) 24 #define GPGDAT (*(volatile unsigned long *)0x56000064) 25 #define GPGUP (*(volatile unsigned long *)0x56000068) 26 27 #define GPHCON (*(volatile unsigned long *)0x56000070) 28 #define GPHDAT (*(volatile unsigned long *)0x56000074) 29 #define GPHUP (*(volatile unsigned long *)0x56000078) 30 31 32 33 /*UART registers*/ 34 #define ULCON0 (*(volatile unsigned long *)0x50000000) 35 #define UCON0 (*(volatile unsigned long *)0x50000004) 36 #define UFCON0 (*(volatile unsigned long *)0x50000008) 37 #define UMCON0 (*(volatile unsigned long *)0x5000000c) 38 #define UTRSTAT0 (*(volatile unsigned long *)0x50000010) 39 #define UTXH0 (*(volatile unsigned char *)0x50000020) 40 #define URXH0 (*(volatile unsigned char *)0x50000024) 41 #define UBRDIV0 (*(volatile unsigned long *)0x50000028) 42 43 44 /*interrupt registes*/ 45 #define SRCPND (*(volatile unsigned long *)0x4A000000) 46 #define INTMOD (*(volatile unsigned long *)0x4A000004) 47 #define INTMSK (*(volatile unsigned long *)0x4A000008) 48 #define PRIORITY (*(volatile unsigned long *)0x4A00000c) 49 #define INTPND (*(volatile unsigned long *)0x4A000010) 50 #define INTOFFSET (*(volatile unsigned long *)0x4A000014) 51 #define SUBSRCPND (*(volatile unsigned long *)0x4A000018) 52 #define INTSUBMSK (*(volatile unsigned long *)0x4A00001c) 53 54 /*external interrupt registers*/ 55 #define EINTMASK (*(volatile unsigned long *)0x560000a4) 56 #define EINTPEND (*(volatile unsigned long *)0x560000a8) 57 58 /*clock registers*/ 59 #define LOCKTIME (*(volatile unsigned long *)0x4c000000) 60 #define MPLLCON (*(volatile unsigned long *)0x4c000004) 61 #define UPLLCON (*(volatile unsigned long *)0x4c000008) 62 #define CLKCON (*(volatile unsigned long *)0x4c00000c) 63 #define CLKSLOW (*(volatile unsigned long *)0x4c000010) 64 #define CLKDIVN (*(volatile unsigned long *)0x4c000014) 65 66 67 /*PWM & Timer registers*/ 68 #define TCFG0 (*(volatile unsigned long *)0x51000000) 69 #define TCFG1 (*(volatile unsigned long *)0x51000004) 70 #define TCON (*(volatile unsigned long *)0x51000008) 71 #define TCNTB0 (*(volatile unsigned long *)0x5100000c) 72 #define TCMPB0 (*(volatile unsigned long *)0x51000010) 73 #define TCNTO0 (*(volatile unsigned long *)0x51000014) 74 75 #define GSTATUS1 (*(volatile unsigned long *)0x560000B0)
serial.h
1 void uart0_init(void); 2 void putc(unsigned char c); 3 unsigned char getc(void); 4 int isDigit(unsigned char c); 5 int isLetter(unsigned char c);
head.S
1 @****************************************************************************** 2 @ File:head.S 3 @ 功能:设置SDRAM,将程序复制到SDRAM,然后跳到SDRAM继续执行 4 @****************************************************************************** 5 6 .extern main 7 .text 8 .global _start 9 _start: 10 Reset: 11 ldr sp, =4096 @ 设置栈指针,以下都是C函数,调用前需要设好栈 12 bl disable_watch_dog @ 关闭WATCHDOG,否则CPU会不断重启 13 bl clock_init @ 设置MPLL,改变FCLK、HCLK、PCLK 14 bl memsetup @ 设置存储控制器以使用SDRAM 15 bl copy_steppingstone_to_sdram @ 复制代码到SDRAM中 16 ldr pc, =on_sdram @ 跳到SDRAM中继续执行 17 on_sdram: 18 ldr sp, =0x34000000 @ 设置栈指针 19 ldr lr, =halt_loop @ 设置返回地址 20 ldr pc, =main @ 调用main函数 21 halt_loop: 22 b halt_loop
init.c
1 /* 2 * init.c: 进行一些初始化 3 */ 4 5 #include "s3c24xx.h" 6 7 void disable_watch_dog(void); 8 void clock_init(void); 9 void memsetup(void); 10 void copy_steppingstone_to_sdram(void); 11 12 /* 13 * 关闭WATCHDOG,否则CPU会不断重启 14 */ 15 void disable_watch_dog(void) 16 { 17 WTCON = 0; // 关闭WATCHDOG很简单,往这个寄存器写0即可 18 } 19 20 #define S3C2410_MPLL_200MHZ ((0x5c<<12)|(0x04<<4)|(0x00)) 21 #define S3C2440_MPLL_200MHZ ((0x5c<<12)|(0x01<<4)|(0x02)) 22 /* 23 * 对于MPLLCON寄存器,[19:12]为MDIV,[9:4]为PDIV,[1:0]为SDIV 24 * 有如下计算公式: 25 * S3C2410: MPLL(FCLK) = (m * Fin)/(p * 2^s) 26 * S3C2440: MPLL(FCLK) = (2 * m * Fin)/(p * 2^s) 27 * 其中: m = MDIV + 8, p = PDIV + 2, s = SDIV 28 * 对于本开发板,Fin = 12MHz 29 * 设置CLKDIVN,令分频比为:FCLK:HCLK:PCLK=1:2:4, 30 * FCLK=200MHz,HCLK=100MHz,PCLK=50MHz 31 */ 32 void clock_init(void) 33 { 34 // LOCKTIME = 0x00ffffff; // 使用默认值即可 35 CLKDIVN = 0x03; // FCLK:HCLK:PCLK=1:2:4, HDIVN=1,PDIVN=1 36 37 /* 如果HDIVN非0,CPU的总线模式应该从“fast bus mode”变为“asynchronous bus mode” */ 38 __asm__( 39 "mrc p15, 0, r1, c1, c0, 0 " /* 读出控制寄存器 */ 40 "orr r1, r1, #0xc0000000 " /* 设置为“asynchronous bus mode” */ 41 "mcr p15, 0, r1, c1, c0, 0 " /* 写入控制寄存器 */ 42 ); 43 44 /* 判断是S3C2410还是S3C2440 */ 45 if ((GSTATUS1 == 0x32410000) || (GSTATUS1 == 0x32410002)) 46 { 47 MPLLCON = S3C2410_MPLL_200MHZ; /* 现在,FCLK=200MHz,HCLK=100MHz,PCLK=50MHz */ 48 } 49 else 50 { 51 MPLLCON = S3C2440_MPLL_200MHZ; /* 现在,FCLK=200MHz,HCLK=100MHz,PCLK=50MHz */ 52 } 53 } 54 55 /* 56 * 设置存储控制器以使用SDRAM 57 */ 58 void memsetup(void) 59 { 60 volatile unsigned long *p = (volatile unsigned long *)MEM_CTL_BASE; 61 62 /* 这个函数之所以这样赋值,而不是像前面的实验(比如mmu实验)那样将配置值 63 * 写在数组中,是因为要生成”位置无关的代码”,使得这个函数可以在被复制到 64 * SDRAM之前就可以在steppingstone中运行 65 */ 66 /* 存储控制器13个寄存器的值 */ 67 p[0] = 0x22011110; //BWSCON 68 p[1] = 0x00000700; //BANKCON0 69 p[2] = 0x00000700; //BANKCON1 70 p[3] = 0x00000700; //BANKCON2 71 p[4] = 0x00000700; //BANKCON3 72 p[5] = 0x00000700; //BANKCON4 73 p[6] = 0x00000700; //BANKCON5 74 p[7] = 0x00018005; //BANKCON6 75 p[8] = 0x00018005; //BANKCON7 76 77 /* REFRESH, 78 * HCLK=12MHz: 0x008C07A3, 79 * HCLK=100MHz: 0x008C04F4 80 */ 81 p[9] = 0x008C04F4; 82 p[10] = 0x000000B1; //BANKSIZE 83 p[11] = 0x00000030; //MRSRB6 84 p[12] = 0x00000030; //MRSRB7 85 } 86 87 void copy_steppingstone_to_sdram(void) 88 { 89 unsigned int *pdwSrc = (unsigned int *)0; 90 unsigned int *pdwDest = (unsigned int *)0x30000000; 91 92 while (pdwSrc < (unsigned int *)4096) 93 { 94 *pdwDest = *pdwSrc; 95 pdwDest++; 96 pdwSrc++; 97 } 98 }
serial.c
1 #include "s3c24xx.h" 2 #include "serial.h" 3 4 #define TXD0READY (1<<2) 5 #define RXD0READY (1) 6 7 #define PCLK 50000000 // init.c中的clock_init函数设置PCLK为50MHz 8 #define UART_CLK PCLK // UART0的时钟源设为PCLK 9 #define UART_BAUD_RATE 115200 // 波特率 10 #define UART_BRD ((UART_CLK / (UART_BAUD_RATE * 16)) - 1) 11 12 /* 13 * 初始化UART0 14 * 115200,8N1,无流控 15 */ 16 void uart0_init(void) 17 { 18 GPHCON |= 0xa0; // GPH2,GPH3用作TXD0,RXD0 19 GPHUP = 0x0c; // GPH2,GPH3内部上拉 20 21 ULCON0 = 0x03; // 8N1(8个数据位,无较验,1个停止位) 22 UCON0 = 0x05; // 查询方式,UART时钟源为PCLK 23 UFCON0 = 0x00; // 不使用FIFO 24 UMCON0 = 0x00; // 不使用流控 25 UBRDIV0 = UART_BRD; // 波特率为115200 26 } 27 28 /* 29 * 发送一个字符 30 */ 31 void putc(unsigned char c) 32 { 33 /* 等待,直到发送缓冲区中的数据已经全部发送出去 */ 34 while (!(UTRSTAT0 & TXD0READY)); 35 36 /* 向UTXH0寄存器中写入数据,UART即自动将它发送出去 */ 37 UTXH0 = c; 38 } 39 40 /* 41 * 接收字符 42 */ 43 unsigned char getc(void) 44 { 45 /* 等待,直到接收缓冲区中的有数据 */ 46 while (!(UTRSTAT0 & RXD0READY)); 47 48 /* 直接读取URXH0寄存器,即可获得接收到的数据 */ 49 return URXH0; 50 } 51 52 /* 53 * 判断一个字符是否数字 54 */ 55 int isDigit(unsigned char c) 56 { 57 if (c >= '0' && c <= '9') 58 return 1; 59 else 60 return 0; 61 } 62 63 /* 64 * 判断一个字符是否英文字母 65 */ 66 int isLetter(unsigned char c) 67 { 68 if (c >= 'a' && c <= 'z') 69 return 1; 70 else if (c >= 'A' && c <= 'Z') 71 return 1; 72 else 73 return 0; 74 }
main.c
1 #include "serial.h" 2 3 int main() 4 { 5 unsigned char c; 6 uart0_init(); // 波特率115200,8N1(8个数据位,无校验位,1个停止位) 7 8 while(1) 9 { 10 // 从串口接收数据后,判断其是否数字或子母,若是则加1后输出 11 c = getc(); 12 if (isDigit(c) || isLetter(c)) 13 putc(c+1); 14 } 15 16 return 0; 17 }