zoukankan      html  css  js  c++  java
  • [Inside HotSpot] Epsilon GC

    1. Epsilon GC简介

    Epsilon GC源于RedHat开发者Aleksey Shipilëv提交的一份JEP 318: Epsilon: A No-Op Garbage Collector (Experimental)草案,该GC只做内存分配而不做内存回收(reclaim),当堆空间耗尽关闭JVM即可,因为它不做任何垃圾回收工作,所以又叫No-op GC。也因为它简单,很适合用来入门OpenJDK GC源码,看看一个最小化可行的垃圾回收器应该具备哪些功能。

    Epsilon GC源码位于gc/epsilon:

    hotspot/share/gc/epsilon:
    	epsilon_globals.hpp           # GC提供的一些JVM参数,如-XX:+UseEpsilonGC
    	epsilonArguments.cpp
    	epsilonArguments.hpp          # GC参数在JVM中的表示,是否使用TLAB等,是否开启EpsilonGC等
    	epsilonBarrierSet.cpp
    	epsilonBarrierSet.hpp         # GC barrier,用于线程创建的时候初始化TLAB
    	epsilonCollectorPolicy.hpp    # 垃圾回收策略,堆初始化大小,最小,最大值,对齐等信息
    	epsilonHeap.cpp			          # 包含堆初始化,内存分配,垃圾回收接口
    	epsilonHeap.hpp               # 真正的堆表示,EpsilonGC独有
    	epsilonMemoryPool.cpp
    	epsilonMemoryPool.hpp         # 感知该堆内存的使用情况,gc次数,gc线程数,上次gc时间等
    	epsilonMonitoringSupport.cpp  
    	epsilonMonitoringSupport.hpp  # perfdata支持
    	epsilonThreadLocalData.hpp    # TLAB内存分配
    	vmStructs_epsilon.hpp         # serviceability agent支持
    

    另外为了启动EpsilonGC需要添加JVM参数-XX:+UnlockExperimentalVMOptions -XX:+UseEpsilonGC,为了输出GC日志查看详细过程添加JVM参数-Xlog:gc*=trace(仅限fastdebug版JVM)

    2. EpsilonGC创建

    虚拟机在创建早期会调用GCArguments::initialize()初始化GC参数,然后创建中期会配置好堆空间并调用GCArguments::create_heap()创建堆:

    // hotspotshare
    untime	hread.cpp
    // 创建早期
    jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
      ...
      jint ergo_result = Arguments::apply_ergo(); // GCArguments::initialize()
      
    }
    // hotspotsharememoryuniverse.cpp
    // 创建中期
    jint Universe::initialize_heap() {
      _collectedHeap = create_heap();			  // GCArguments::create_heap()
      jint status = _collectedHeap->initialize();
      ...
    }
    

    首先我们创建GCArguments的子类用来表示EpsilonGC的GC参数:

    class EpsilonArguments : public GCArguments {
    public:
      virtual void initialize(); 
      virtual size_t conservative_max_heap_alignment();
      virtual CollectedHeap* create_heap();
    };
    

    GCArguments::initialize()可以初始化GC参数,不过并没有什么可以初始化的,Epsilon GC只是简单检查了一下是否有-XX:+UseEpsilonGC

    CollectedHeap* EpsilonArguments::create_heap() {
      return create_heap_with_policy<EpsilonHeap, EpsilonCollectorPolicy>();
    }
    

    GCArguments::create_heap()更简单,直接根据堆的类型(EpsilonHeap,真正的Java堆空间表示)和垃圾回收器策略(EpsilonCollectorPolicy,堆初始化大小,最小,最大值,对齐等信息)创建堆。这个新创建的堆是EpsilonHeap,关于Java堆体系可以参见Java分代堆,简单来说,每种垃圾回收器都有一个独属于自己的可垃圾回收堆,它需要继承自CollectedHeap:

    // hotspotsharegcepsilonepsilonHeap.hpp
    class EpsilonHeap : public CollectedHeap {
      friend class VMStructs;
    private:
      // 回收器策略
      EpsilonCollectorPolicy* _policy;
      // 软引用清除策略
      SoftRefPolicy _soft_ref_policy;
      // perfdata支持
      EpsilonMonitoringSupport* _monitoring_support;
      // 感知内存池使用情况
      MemoryPool* _pool;
      GCMemoryManager _memory_manager;
      // 实际堆空间
      ContiguousSpace* _space;
      // 虚拟内存(及其物理后备)
      VirtualSpace _virtual_space;
      // 最大TLAB
      size_t _max_tlab_size;
      // 间隔多少次内存分配再进行perdata数据更新
      size_t _step_counter_update;
      // 间隔多少次内存分配再进行堆用量输出
      size_t _step_heap_print;
      // TLAB大小衰减时间
      int64_t _decay_time_ns;
      // 最后一次perdata数据更新计数
      volatile size_t _last_counter_update;
      // 最后一次输出堆用量计数
      volatile size_t _last_heap_print;
    public:
      ...
    };
    

    CollectedHeap是一个抽象基类,里面有很多纯虚函数需要子类重写,创建完堆之后JVM会初始化堆,初始化分两步走:EpsilonHeap::initialize和EpsilonHeap::post_initialize。initialize是重头戏,它做了最重要的工作,包括堆内存的申请,gc barrier的设置:

    // hotspotsharegcepsilonepsilonHeap.hpp
    jint EpsilonHeap::initialize() {
      size_t align = _policy->heap_alignment();
      size_t init_byte_size = align_up(_policy->initial_heap_byte_size(), align);
      size_t max_byte_size  = align_up(_policy->max_heap_byte_size(), align);
    
      // 申请虚拟内存空间,然后commit一部分
      // [------------------------------|------------------]
      // [           committed          |      reserved    ]
      // 0                           init_byte_size      max_byte_size
      // low/low_boundary            high                high_boundary
      ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, align);
      _virtual_space.initialize(heap_rs, init_byte_size);
    
      MemRegion committed_region((HeapWord*)_virtual_space.low(),          (HeapWord*)_virtual_space.high());
      MemRegion  reserved_region((HeapWord*)_virtual_space.low_boundary(), (HeapWord*)_virtual_space.high_boundary());
    
      initialize_reserved_region(reserved_region.start(), reserved_region.end());
      
      // 用ContiguousSpace表示这片(连续)堆内存
      _space = new ContiguousSpace();
      _space->initialize(committed_region, /* clear_space = */ true, /* mangle_space = */ true);
    
      // 计算最大tlab大小
      _max_tlab_size = MIN2(CollectedHeap::max_tlab_size(), align_object_size(EpsilonMaxTLABSize / HeapWordSize));
      _step_counter_update = MIN2<size_t>(max_byte_size / 16, EpsilonUpdateCountersStep);
      _step_heap_print = (EpsilonPrintHeapSteps == 0) ? SIZE_MAX : (max_byte_size / EpsilonPrintHeapSteps);
      _decay_time_ns = (int64_t) EpsilonTLABDecayTime * NANOSECS_PER_MILLISEC;
    
      // perfdata支持,外部可以访问共享内存感知堆信息
      _monitoring_support = new EpsilonMonitoringSupport(this);
      _last_counter_update = 0;
      _last_heap_print = 0;
    
      // 创建gc barrier,比如CMS修改老年代指向新生代的指针就有一个write barrier
      // Epsilon GC只是用它在线程创建的时候初始化TLAB
      BarrierSet::set_barrier_set(new EpsilonBarrierSet());
    
      // 完成初始化,输出配置信息
      ...
      return JNI_OK;
    }
    
    void EpsilonHeap::post_initialize() {
      CollectedHeap::post_initialize();
    }
    
    void EpsilonHeap::initialize_serviceability() {
      // post_initialize会调用该方法,将堆空间加入内存池管理
      _pool = new EpsilonMemoryPool(this);
      _memory_manager.add_pool(_pool);
    }
    

    3. 内存分配

    EpsilonGC支持普通内存分配和TLAB内存分配,前者接口是mem_allocate(),后者是allocate_new_tlab()。

    3.1 普通内存分配

    // hotspotsharegcepsilonepsilonHeap.hpp
    HeapWord* EpsilonHeap::mem_allocate(size_t size, bool *gc_overhead_limit_was_exceeded) {
      *gc_overhead_limit_was_exceeded = false;
      return allocate_work(size);
    }
    
    HeapWord* EpsilonHeap::allocate_work(size_t size) {
      // 无锁并发分配
      HeapWord* res = _space->par_allocate(size);
    
      // 如果分配失败,循环扩容
      while (res == NULL) {
        MutexLockerEx ml(Heap_lock);
        // 先扩容(之前virtual space有一部分是reserved但是没有committed)
        // 剩余可用空间大小
        size_t space_left = max_capacity() - capacity();
        // 需要空间大小
        size_t want_space = MAX2(size, EpsilonMinHeapExpand);
    
        if (want_space < space_left) {
          bool expand = _virtual_space.expand_by(want_space);
        } else if (size < space_left) {
          bool expand = _virtual_space.expand_by(space_left);
        } else {
          // 如果扩容失败则分配失败,返回null
          return NULL;
        }
        // 扩容成功,设置virtual_space的committed尾为新大小
        _space->set_end((HeapWord *) _virtual_space.high());
        // 再次尝试分配内存
        res = _space->par_allocate(size);
      }
    
      size_t used = _space->used();
      // 分配成功,更新perdata信息
      {
        size_t last = _last_counter_update;
        if ((used - last >= _step_counter_update) && Atomic::cmpxchg(used, &_last_counter_update, last) == last) {
          _monitoring_support->update_counters();
        }
      }
      // 输出堆占用情况
      {
        size_t last = _last_heap_print;
        if ((used - last >= _step_heap_print) && Atomic::cmpxchg(used, &_last_heap_print, last) == last) {
          log_info(gc)("Heap: " SIZE_FORMAT "M reserved, " SIZE_FORMAT "M (%.2f%%) committed, " SIZE_FORMAT "M (%.2f%%) used",
                       max_capacity() / M,
                       capacity() / M,
                       capacity() * 100.0 / max_capacity(),
                       used / M,
                       used * 100.0 / max_capacity());
        }
      }
    
      return res;
    }
    

    为了看到扩容的发生,我们可以修改一下代码,在循环扩容处添加日志记录:

        log_info(gc)("Heap expansion: committed %lluM, needs %lluM, reserved %lluM",
            capacity() / M, 
            want_space/M,
            max_capacity() / M);
    

    编译得到JVM,然后准备一段Java代码:

    package com.github.kelthuzadx;
    class Foo{
        private static int _1MB = 1024*1024;
        private byte[] b = new byte[_1MB*200];
    }
    public class GCBaby {
        public static void main(String[] args) {
           new Foo();new Foo();
        }
    }
    

    启动JVM时添加参数-XX:+UnlockExperimentalVMOptions -Xms128m -Xmx512m -XX:+UseEpsilonGC -Xlog:gc*=info ,最终我们可以看到为了分配400M的对象,初始大小128M的堆进行了3次扩容:

    [8.904s][info][gc] Heap expansion: committed 128M, needs 128M, reserved 512M
    [8.904s][info][gc] Heap: 512M reserved, 256M (50.00%) committed, 207M (40.51%) used
    
    [9.010s][info][gc] Heap expansion: committed 256M, needs 128M, reserved 512M
    [9.010s][info][gc] Heap expansion: committed 384M, needs 128M, reserved 512M
    [9.011s][info][gc] Heap: 512M reserved, 512M (100.00%) committed, 407M (79.57%) used
    

    3.2 TLAB内存分配

    // hotspotsharegcepsilonepsilonHeap.hpp
    HeapWord* EpsilonHeap::allocate_new_tlab(size_t min_size,
                                             size_t requested_size,
                                             size_t* actual_size) {
      Thread* thread = Thread::current();
      bool fits = true;
      size_t size = requested_size;
      size_t ergo_tlab = requested_size;
      int64_t time = 0;
      // 如果启用TLAB
      if (EpsilonElasticTLAB) {
        // 为线程设置TLAB
        ergo_tlab = EpsilonThreadLocalData::ergo_tlab_size(thread);
        // 如果启用TLAB衰减,则默认1s后TLAB大小重置为0
        if (EpsilonElasticTLABDecay) {
          int64_t last_time = EpsilonThreadLocalData::last_tlab_time(thread);
          time = (int64_t) os::javaTimeNanos();
          if (last_time != 0 && (time - last_time > _decay_time_ns)) {
            ergo_tlab = 0;
            EpsilonThreadLocalData::set_ergo_tlab_size(thread, 0);
          }
        }
        // 如果TLAB大小能容纳下本次分配,就在TLAB上分配
        // 否则弹性的增大TLAB大小,所谓的弹性增大默认是1.1倍扩大
        fits = (requested_size <= ergo_tlab);
        if (!fits) {
          size = (size_t) (ergo_tlab * EpsilonTLABElasticity);
        }
      }
    
      size = MAX2(min_size, MIN2(_max_tlab_size, size));
      size = align_up(size, MinObjAlignment);
    
      if (log_is_enabled(Trace, gc)) {
        ResourceMark rm;
        log_trace(gc)("TLAB size for "%s" (Requested: " SIZE_FORMAT "K, Min: " SIZE_FORMAT
                              "K, Max: " SIZE_FORMAT "K, Ergo: " SIZE_FORMAT "K) -> " SIZE_FORMAT "K",
                      thread->name(),
                      requested_size * HeapWordSize / K,
                      min_size * HeapWordSize / K,
                      _max_tlab_size * HeapWordSize / K,
                      ergo_tlab * HeapWordSize / K,
                      size * HeapWordSize / K);
      }
    
      // 准备就绪,分配内存
      HeapWord* res = allocate_work(size);
    
      if (res != NULL) {
        // 分配成功
        *actual_size = size;
        if (EpsilonElasticTLABDecay) {
          EpsilonThreadLocalData::set_last_tlab_time(thread, time);
        }
        if (EpsilonElasticTLAB && !fits) {
          EpsilonThreadLocalData::set_ergo_tlab_size(thread, size);
        }
      } else {
        // 分配失败
        if (EpsilonElasticTLAB) {
          EpsilonThreadLocalData::set_ergo_tlab_size(thread, 0);
        }
      }
    
      return res;
    }
    

    4. 垃圾回收

    前面已经提到EpsilonGC只管分配不管释放,所以垃圾回收接口极其简单,就只需要记录一下GC计数信息即可:

    // hotspotsharegcepsilonepsilonHeap.cpp
    void EpsilonHeap::collect(GCCause::Cause cause) {
      log_info(gc)("GC request for "%s" is ignored", GCCause::to_string(cause));
      _monitoring_support->update_counters();
    }
    void EpsilonHeap::do_full_collection(bool clear_all_soft_refs) {
      log_info(gc)("Full GC request for "%s" is ignored", GCCause::to_string(gc_cause()));
      _monitoring_support->update_counters();
    }
    // hotspotsharegcepsilonepsilonMonitoringSupport.cpp
    void EpsilonMonitoringSupport::update_counters() {
      MemoryService::track_memory_usage();
      // 如果启用perfdata
      if (UsePerfData) {
        EpsilonHeap* heap = EpsilonHeap::heap();
        size_t used = heap->used();
        size_t capacity = heap->capacity();
        _heap_counters->update_all();
        _space_counters->update_all(capacity, used);
        MetaspaceCounters::update_performance_counters();
        CompressedClassSpaceCounters::update_performance_counters();
      }
    }
    

    然后?就没啦!大功告成。如果想做一个有实际垃圾回收效果的GC可以继续阅读Do It Yourself (OpenJDK) Garbage Collector,这篇文章在Epsilon GC上增加了一个基于标记-压缩(Mark-Compact)算法的垃圾回收机制。

    引用

    [1] Build Your Own GC in 20 Minutes
    [2] Do It Yourself (OpenJDK) Garbage Collector
    [3] JEP 318: Epsilon: A No-Op Garbage Collector (Experimental)

  • 相关阅读:
    软工实践4
    软工实践3
    软工实践1
    《暗时间》读书笔记
    关系规范化(数据库)
    关于Git的初步使用
    软件体系结构模式
    第六周编程总结
    第五周编程总结
    第四周编程总结
  • 原文地址:https://www.cnblogs.com/kelthuzadx/p/10906469.html
Copyright © 2011-2022 走看看