zoukankan      html  css  js  c++  java
  • [C3] 正则化(Regularization)

    正则化(Regularization - Solving the Problem of Overfitting)

    欠拟合(高偏差) VS 过度拟合(高方差)

    Underfitting, or high bias, is when the form of our hypothesis function h maps poorly to the trend of the data.
    It is usually caused by a function that is too simple or uses too few features.
    欠拟合(高偏差):没有很好的拟合训练集数据;

    At the other extreme, overfitting, or high variance, is caused by a hypothesis function that fits the available data but does not generalize well to predict new data.
    It is usually caused by a complicated function that creates a lot of unnecessary curves and angles unrelated to the data.
    过度拟合(高方差):可以很好的拟合训练集数据,但是函数太过庞大,变量太多,且缺少足够多的数据约束该模型(m < n),无法泛化到新的数据样本。

    This terminology is applied to both linear and logistic regression. There are two main options to address the issue of overfitting:
    两种方法解决过度拟合:

    1. Reduce the number of features
    • Manually select which features to keep
    • Use a model selection algorithm (studied later in the course)
    1. Regularization
    • Keep all the features, but reduce the magnitude of parameters ( heta_j).
    • Regularization works well when we have a lot of slightly useful features.

    正则化 - 线性回归代价函数

    所有正则化均不包括 ( heta_0)

    (J( heta)=frac{1}{2m} Bigg[ sumlimits_{i=1}^m Big( h_ heta(x^{(i)}) - y^{(i)} Big)^2 + lambda sumlimits_{j=1}^n heta_j^2 Bigg])

    向量化表示为(A vectorized implementation is):

    (overrightarrow{h}=g(X overrightarrow{ heta}))

    (J( heta)=frac{1}{2m} cdot Bigg[ (overrightarrow{h}-overrightarrow{y})^T cdot (overrightarrow{h}-overrightarrow{y}) + lambda cdot (overrightarrow{l} cdot overrightarrow{ heta}^{.2}) Bigg])

    (overrightarrow{l} = [0, 1, 1, ...1])

    代码实现:

    m = length(y);
    
    l = ones(1, length(theta)); l(:,1) = 0;
    J = 1/(2*m) * ((X * theta - y)' * (X * theta - y) + lambda * (l * (theta.^2));
    
    or 
    
    J = 1/(2*m) * ((X * theta - y)' * (X * theta - y) + lambda * (theta'*theta - theta(1,:).^2);
    

    正则化 - 逻辑回归代价函数

    所有正则化均不包括 ( heta_0)

    (J( heta)=-frac{1}{m} sumlimits_{i=1}^m Bigg[ y^{(i)} cdot log igg(h_ heta(x^{(i)}) igg) + (1-y^{(i)}) cdot log igg(1-h_ heta(x^{(i)}) igg) Bigg] + frac{lambda}{2m} sumlimits_{j=1}^n heta_j^2)

    向量化表示为(A vectorized implementation is):

    (overrightarrow{h}=g(X overrightarrow{ heta}))

    (J( heta)=frac{1}{m} cdot Big( -overrightarrow{y}^T cdot log(overrightarrow{h}) - (1- overrightarrow{y})^T cdot log(1- overrightarrow{h}) Big) + frac{lambda}{2m} (overrightarrow{l} cdot overrightarrow{ heta}^{.2}))

    (overrightarrow{l} = [0, 1, 1, ...1])

    代码实现:

    m = length(y);
    
    l = ones(1, length(theta)); l(:,1) = 0;
    J = (1/m)*(-y'*log(sigmoid(X*theta))-(1 - y)'* log(1-sigmoid(X*theta))) + ...
        (lambda/(2*m))*(l*(theta.^2)); 
    
    or 
    
    J = (1/m)*(-y'*log(sigmoid(X*theta))-(1 - y)'* log(1-sigmoid(X*theta))) + ...
        (lambda/(2*m))*(theta'*theta - theta(1,:).^2);
    

    正则化后的线性回归和逻辑回归梯度下降

    所有正则化均不包括 ( heta_0)

    (egin{cases} heta_0:= heta_0 - alpha frac{1}{m} sumlimits_{i=1}^m Big( h_ heta(x^{(i)}) - y^{(i)} Big) cdot x_0^{(i)} \ \ heta_j:= heta_j - alpha Bigg[ frac{1}{m} sumlimits_{i=1}^m Big( h_ heta(x^{(i)}) - y^{(i)} Big) cdot x_j^{(i)} + frac{lambda}{m} cdot heta_j Bigg] end{cases})

    向量化表示为(A vectorized implementation is):

    (frac{1}{m} cdot Big( X^T cdot (overrightarrow{h} - overrightarrow{y}) Big) + frac{lambda}{m} cdot heta^{'})

    ( heta^{'} = egin{bmatrix} 0\[0.3em] heta_1\[0.3em] heta_2\[0.3em].\[0.3em].\[0.3em].\[0.3em] heta_n end{bmatrix})

    代码实现:

    reg_theta=theta; reg_theta(1, :) = 0;
    grad = (1/m)*(X'*(sigmoid(X*theta) - y)) + (lambda/m)*reg_theta;
    

    最终形式:对 ( heta_j) 的梯度下降公式进行整理变形(With some manipulation our update rule can also be represented as):

    (egin{cases} heta_0:= heta_0 - alpha frac{1}{m} sumlimits_{i=1}^m Big( h_ heta(x^{(i)}) - y^{(i)} Big) cdot x_0^{(i)} \ \ heta_j:= heta_j (1- alpha frac{lambda}{m}) - alpha frac{1}{m} sumlimits_{i=1}^m Big( h_ heta(x^{(i)}) - y^{(i)} Big) cdot x_j^{(i)} end{cases})

    对线性回归正规方程进行正则化

    所有正则化均不包括 ( heta_0)

    (1 - alphafrac{lambda}{m}) will always be less than 1. Intuitively you can see it as reducing the value of ( heta_j) by some amount on every update. Notice that the second term is now exactly the same as it was before.

    Now let's approach regularization using the alternate method of the non-iterative normal equation.

    To add in regularization, the equation is the same as our original, except that we add another term inside the parentheses:

    原始形态 (overrightarrow{ heta} = (X^TX)^{-1}X^T overrightarrow{y})

    正则化后 (overrightarrow{ heta} = (X^TX + lambda L)^{-1}X^T overrightarrow{y})

    (L = egin{bmatrix} 0&&&&&&\[0.3em]&1&&&&&\[0.3em]&&1&&&&\[0.3em]&&&·&&&\[0.3em]&&&&·&&\[0.3em]&&&&&·&\[0.3em]&&&&&&1end{bmatrix})

    L is a matrix with 0 at the top left and 1's down the diagonal, with 0's everywhere else. It should have dimension (n+1)×(n+1).

    Intuitively, this is the identity matrix (though we are not including (x_0))multiplied with a single real number (lambda).

    Recall that if m < n, then (X^TX) is non-invertible. However, when we add the term (lambda⋅L), then (X^TX + lambda⋅L) becomes invertible.

    程序代码

    正则化的特性已经全部添加到了其他练习代码中,如线性回归,逻辑回归,神经网络等。可在其他练习中查看到,如需非正则化,只要将Lambda=0即可。

    获取源码以其他文件,可点击右上角 Fork me on GitHub 自行 Clone。

  • 相关阅读:
    关于思考力
    2019第24周日
    提高收入的方法
    工作中的管理
    技术是解决问题的一种手段
    Django的事务性
    shell单引号与变量、双引号与变量、如何在多重引号里面取到shell变量的值?
    django外键以及主表和子表的相互查询
    django数据模型中 null=True 和 blank=True 有什么区别?
    Django静态文件的加载以及STATIC_URL、 STATIC_ROOT 、STATICFILES_DIRS的区别
  • 原文地址:https://www.cnblogs.com/kershaw/p/10890774.html
Copyright © 2011-2022 走看看