一、用自己的话描述出其本身的含义:
1、特征选择
2、PCA
二、并用自己的话阐述出两者的主要区别
解:
一、
1、特征选择:从全部特征中选取一个特征子集,使得使构造出来的模型效果更好,推广能力更强,是能剔除不相关、冗余、没有差异刻画能力的特征,从而达到减少特征个数、减少训练或者运行时间、提高模型精确度的作用
2、PCA:一种分析、简化数据集的技术,经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征。数据中会使方差最大化的方向,PCA是在对特征数据执行投影或压缩时,最大化的降低信息丢失。
二、
特征选择选取出的特征不改变原有特征信息,PCA会改变原有的特征信息。