zoukankan      html  css  js  c++  java
  • [spoj1182][Sorted Bit Sequence] (数位dp)

    Description

    Let's consider the 32 bit representation of all integers i from m up to n inclusive (m ≤ i ≤ n; m × n ≥ 0, -2^31 ≤ m ≤ n ≤ 2^31-1). Note that a negative number is represented in 32 bit Additional Code. That is the 32 bit sequence, the binary sum of which and the 32 bit representation of the corresponding positive number is 2^32 (1 0000 0000 0000 0000 0000 0000 0000 0000 in binary).

    For example, the 32 bit representation of 6 is 0000 0000 0000 0000 0000 0000 0000 0110

    and the 32 bit representation of -6 is 1111 1111 1111 1111 1111 1111 1111 1010

    because

    0000 0000 0000 0000 0000 0000 0000 0110 (6) 

    1111 1111 1111 1111 1111 1111 1111 1010 (-6) 
    -------------------------------------------------
    = 1 0000 0000 0000 0000 0000 0000 0000 0000 (2^32)

    Let's sort the 32 bit representations of these numbers in increasing order of the number of bit 1. If two 32 bit representations that have the same number of bit 1, they are sorted in lexicographical order.

    For example, with m = 0 and n = 5, the result of the sorting will be

    No.

    Decimal number

    Binary 32 bit representation

    1

    0

    0000 0000 0000 0000 0000 0000 0000 0000

    2

    1

    0000 0000 0000 0000 0000 0000 0000 0001

    3

    2

    0000 0000 0000 0000 0000 0000 0000 0010

    4

    4

    0000 0000 0000 0000 0000 0000 0000 0100

    5

    3

    0000 0000 0000 0000 0000 0000 0000 0011

    6

    5

    0000 0000 0000 0000 0000 0000 0000 0101

    with m = -5 and n = -2, the result of the sorting will be

    No.

    Decimal number

    Binary 32 bit representation

    1

    -4

    1111 1111 1111 1111 1111 1111 1111 1100

    2

    -5

    1111 1111 1111 1111 1111 1111 1111 1011

    3

    -3

    1111 1111 1111 1111 1111 1111 1111 1101

    4

    -2

    1111 1111 1111 1111 1111 1111 1111 1110

     

    Given m, n and k (1 ≤ k ≤ min{n − m + 1, 2 147 473 547}), your task is to write a program to find a number corresponding to k-th representation in the sorted sequence.

    Input

    The input consists of several data sets. The first line of the input file contains the number of data sets which is a positive integer and is not bigger than 1000. The following lines describe the data sets.

    For each data set, the only line contains 3 integers m, n and k separated by space.

    Output

    For each data set, write in one line the k-th number of the sorted numbers.

    Example

     Sample input:

    2
    0 5 3
    -5 -2 2

    Sample output:

    2
    -5 

    Solution

    完了,一道简单题调了3个小时

    论文:http://wenku.baidu.com/link?url=FrOOQ0uY5RDizsTypIHewuCFzdQxSpets-J5cUpu_h3NBTxn-s3BMcQhgnQYTdrqV7XTBbDgU-HKNUmt-BbhDx_dNcR4v0ZMBZfs_Fnfjai

    #include<stdio.h>
    inline int Rin(){
        int x=0,c=getchar(),f=1;
        for(;c<48||c>57;c=getchar())
            if(!(c^45))f=-1;
        for(;c>47&&c<58;c=getchar())
            x=(x<<1)+(x<<3)+c-48;
        return x*f;
    }
    int f[33][33];
    void init(){
        int i,j;
        f[0][0]=1;
        for(i=1;i<=31;i++){
            f[i][0]=f[i][i]=1;
            for(j=1;j<i;j++)
                f[i][j]=f[i-1][j-1]+f[i-1][j];
        }
    }
    int cal(int x,int k){
        int cnt=0,ans=0,i;
        for(i=31;i;i--){
            if(x&(1<<i)){
                cnt++;
                if(cnt>k)break;
                x^=(1<<i);
            }
            if((1<<(i-1))<=x)
                ans+=f[i-1][k-cnt];
        }
        if(cnt+x==k)ans++;
        return ans;
    }
    int solve(int x,int y,int k){
        int i,cnt=0;
        for(i=1;i<=31;i++){
            cnt=cal(y,i)-cal(x-1,i);
            if(k<=cnt)break;
            k-=cnt;
        }
        int l=x,r=y,mid,ans=0;
        while(l<=r){
            mid=l+r>>1;
            if(cal(mid,i)-cal(x-1,i)<k)
                l=mid+1;
            else
                ans=mid,r=mid-1;
        }
        return ans;
    }
    int main(){
        init();
        int T=Rin(),n,m,K;
        while(T--){
            m=Rin(),n=Rin(),K=Rin();
            if(!m && !n)puts("0");
            else
                if(!m){
                    K--,m=1;
                    if(!K)puts("0");
                    else printf("%d
    ",solve(m,n,K));
                }
                else if(m>0)printf("%d
    ",solve(m,n,K));
                else if(!n){
                    K--,n=-1;
                    if(!K)puts("0");
                    else printf("%d
    ",(1<<31)|solve(m,n,K));
                }
                else printf("%d
    ",(1<<31)|solve(m,n,K));
        }
        getchar();getchar();
        return 0;
    }
  • 相关阅读:
    git基本
    openwrt 固件的uci系统
    openwrt刷固件恢复原厂固件
    openwrt 登录管理页面openwrt管理页面密码
    openwrt固件升级方法
    OpenWrt简要介绍openwrt开发
    X86 openWRT 虚拟机编译教程 在ubuntu10中X86 OpenWRT的源码编译
    无线热点认证解决方案 WifiDog
    怎么把wifidog直接编译进openwrt
    portal为什么选择开源路由器第三方固件 OpenWrt
  • 原文地址:https://www.cnblogs.com/keshuqi/p/6279890.html
Copyright © 2011-2022 走看看