使用Python实现Hadoop MapReduce程序
原文请参考:
http://blog.csdn.net/zhaoyl03/article/details/8657031/
下面只是将mapper.py和reducer.py在windows上运行了一遍,没有用Hadoop的环境去测试。
环境准备:
- Window 7 – 32
- 安装GunWin32,使得Linux命令可以在cmd上执行
- 安装IDLE (Python GUI),使得Python脚本可以执行
- 将Python的安装路径添加到windows的环境变量中,使得在cmd窗口中切换到Python脚本所在目录时,通过输入脚本名,可以直接执行Python脚本
我的Python安装在: C:Python27python.exe下
测试脚本放在: E:PythonTest下
windows环境变量中增加:C:Python27
mapper.py :
#!/usr/bin/env python import sys # input comes from STDIN (standard input) for line in sys.stdin: # remove leading and trailing whitespace line = line.strip() # split the line into words words = line.split() # increase counters for word in words: # write the results to STDOUT (standard output); # what we output here will be the input for the # Reduce step, i.e. the input for reducer.py # # tab-delimited; the trivial word count is 1 print '%s %s' % (word, 1)
reducer.py :
#!/usr/bin/env python from operator import itemgetter import sys current_word = None current_count = 0 word = None # input comes from STDIN for line in sys.stdin: # remove leading and trailing whitespace line = line.strip() # parse the input we got from mapper.py word, count = line.split(' ', 1) # convert count (currently a string) to int try: count = int(count) except ValueError: # count was not a number, so silently # ignore/discard this line continue # this IF-switch only works because Hadoop sorts map output # by key (here: word) before it is passed to the reducer if current_word == word: current_count += count else: if current_word: # write result to STDOUT print '%s %s' % (current_word, current_count) current_count = count current_word = word # do not forget to output the last word if needed! if current_word == word: print '%s %s' % (current_word, current_count)
输出结果: