###########索引###########
@see http://mp.weixin.qq.com/s/4W4iVOZHdMglk0F_Ikao7A
聚集索引(clustered index):聚集索引决定数据在磁盘上的物理排序,一个表只能有一个聚集索引,一般用primary key来约束。
举例:t_user场景中,uid上的索引。
非聚集索引(non-clustered index):它并不决定数据在磁盘上的物理排序,索引上只包含被建立索引的数据,以及一个行定位符row-locator,这个行定位符,可以理解为一个聚集索引物理排序的指针,通过这个指针,可以找到行数据。
举例,查找年轻MM的业务需求:
select uid from t_user where age > 18 and age < 26;
age上建立的索引,就是非聚集索引。
联合索引:多个字段上建立的索引,能够加速复核查询条件的检索
举例,登录业务需求:
select uid, login_time from t_user where
login_name=? and passwd=?
可以建立(login_name, passwd)的联合索引。
联合索引能够满足最左侧查询需求,例如(a, b, c)三列的联合索引,能够加速a | (a, b) | (a, b, c) 三组查询需求。
这也就是为何不建立(passwd, login_name)这样联合索引的原因,业务上几乎没有passwd的单条件查询需求,而有很多login_name的单条件查询需求。
提问:
select uid, login_time from t_user where
passwd=? and login_name=?
能否命中(login_name, passwd)这个联合索引?
回答:可以,最左侧查询需求,并不是指SQL语句的写法必须满足索引的顺序(这是很多朋友的误解)
索引覆盖:被查询的列,数据能从索引中取得,而不用通过行定位符row-locator再到row上获取,即“被查询列要被所建的索引覆盖”,这能够加速查询速度。
###########索引优化############
@see http://mp.weixin.qq.com/s/ZWez27EmVw_u7GzNbvXuYw
举例,登录业务需求:
select uid, login_time from t_user where
login_name=? and passwd=?
可以建立(login_name, passwd, login_time)的联合索引,由于login_time已经建立在索引中了,被查询的uid和login_time就不用去row上获取数据了,从而加速查询。
末了多说一句,登录这个业务场景,login_name具备唯一性,建这个单列索引就好。
假设订单业务表结构为:
order(oid, date, uid, status, money, time, …)
其中:
oid,订单ID,主键
date,下单日期,有普通索引,管理后台经常按照date查询
uid,用户ID,有普通索引,用户查询自己订单
status,订单状态,有普通索引,管理后台经常按照status查询
money/time,订单金额/时间,被查询字段,无索引
…
假设订单有三种状态:0已下单,1已支付,2已完成
业务需求,查询未完成的订单,哪个SQL更快呢?
select * from order where status!=2
select * from order where status=0 or status=1
select * from order where status IN (0,1)
select * from order where status=0
union all
select * from order where status=1
结论:方案1最慢,方案2,3,4都能命中索引
但是...
一:union all 肯定是能够命中索引的
select * from order where status=0
union all
select * from order where status=1
说明:
直接告诉MySQL怎么做,MySQL耗费的CPU最少
程序员并不经常这么写SQL(union all)
二:简单的in能够命中索引
select * from order where status in (0,1)
说明:
让MySQL思考,查询优化耗费的cpu比union all多,但可以忽略不计
程序员最常这么写SQL(in),这个例子,最建议这么写
三:对于or,新版的MySQL能够命中索引
select * from order where status=0 or status=1
说明:
让MySQL思考,查询优化耗费的cpu比in多,别把负担交给MySQL
不建议程序员频繁用or,不是所有的or都命中索引
对于老版本的MySQL,建议查询分析下
四、对于!=,负向查询肯定不能命中索引
select * from order where status!=2
说明:
全表扫描,效率最低,所有方案中最慢
禁止使用负向查询。使用负向查询时,一定要带上其他可以过滤大量数据的正向查询条件,这样配合使用负向查询是可以的。
举例:
SELECT oid FROM t_order WHERE uid=123 AND status != 1;
订单表5000w数据,但uid=123就会迅速的将数据量过滤到很少的级别(uid建立了索引),此时再接上一个负向的查询条件就无所谓了,扫描的行数本身就会很少。
但如果要查询所有已完成订单之外的订单:
SELECT oid FROM t_order WHERE status != 1;
这就挂了,立马CPU100%,status索引会失效,负向查询导致全表扫描。
五、其他方案
select * from order where status < 2
这个具体的例子中,确实快,但是:
这个例子只举了3个状态,实际业务不止这3个状态,并且状态的“值”正好满足偏序关系,万一是查其他状态呢,SQL不宜依赖于枚举的值,方案不通用
这个SQL可读性差,可理解性差,可维护性差,强烈不推荐