zoukankan      html  css  js  c++  java
  • Spark SQL window functions遇到的问题

    在使用org.apache.spark.sql.functions中的Window functions过程中,遇到了几个棘手的问题,经过不断搜寻和多次试验,终于找到了解决方法。

    首先看例子:

    import org.apache.spark.rdd.RDD
    import org.apache.spark.sql.{SaveMode, Row}
    import org.apache.spark.sql.types._
    import org.apache.spark.sql.hive.HiveContext
    import org.apache.spark.{SparkConf, SparkContext}
    
    object WindowQueryTest {
      def main(args: Array[String]) {
        val sc = new SparkContext(new SparkConf().setAppName("WndFnc_demo").setMaster("local"))
        val hiveContext = new HiveContext(sc)
    
        val data = Seq(("A", 4), ("C", 1), ("D", 1), ("B", 2), ("B", 2), ("D", 4), ("A", 1), ("B", 4))
        val withRowNumbers: Seq[(String, Int, Int)] = data.zipWithIndex.map(e => (e._1._1, e._1._2, e._2))
    
        val rdd: RDD[Row] = sc.parallelize(withRowNumbers).map(triplet => Row(triplet._1, triplet._2, triplet._3))
    
        hiveContext.sql("DROP TABLE IF EXISTS delme")
    
        hiveContext.sql( """CREATE  TABLE `delme`(
                          `key`  string,
                          `val`  int,
                          `ord`  int)""")
        val schema = StructType(Seq(StructField("key", StringType),
          StructField("val", IntegerType), StructField("ord", IntegerType)))
        hiveContext.createDataFrame(rdd, schema).write.mode(SaveMode.Append).saveAsTable("delme")
    
        val qRes = hiveContext.sql("""SELECT key, val
                                                ,MAX(val)OVER(PARTITION BY key) mx
                                                ,MIN(val)OVER(PARTITION BY key) mn
                                                ,row_number() OVER(ORDER BY ord desc) revord
                                                ,rank() OVER(ORDER BY val) rnk
                                            FROM delme""")
        qRes.collect().foreach(println)
      }
    }

    一、初始化必需使用HiveContext

    如果初始化的是SQLContext实例:

    val sqlContext = new SQLContext(sc)

    则会报错,提示必需使用HiveContext:

    Exception in thread "main" org.apache.spark.sql.AnalysisException: Could not resolve window function 'row_number'. Note that, using window functions currently requires a HiveContext;
    ……

    HiveContext继承自SQLContext。

    class HiveContext(sc : org.apache.spark.SparkContext) extends org.apache.spark.sql.SQLContext with org.apache.spark.Logging

    二、外部库需要添加spark/lib中的三个jar文件依赖

    External Libraies必需包含以下三个jar文件,datanucleus-api-jdo, datanucleus-core和datanucleus-rdbms:

    image

    工程编译时将自动生成metastore_db文件夹和derby.log文件。

    image

    否则,出现如下错误信息:

    16/01/18 15:40:07 WARN Persistence: Error creating validator of type org.datanucleus.properties.CorePropertyValidator
    ClassLoaderResolver for class "" gave error on creation : {1}
    org.datanucleus.exceptions.NucleusUserException: ClassLoaderResolver for class "" gave error on creation : {1}
    ……
    16/01/18 15:40:07 WARN HiveMetaStore: Retrying creating default database after error: Unexpected exception caught.
    javax.jdo.JDOFatalInternalException: Unexpected exception caught.
    ……
    16/01/18 15:40:07 INFO HiveMetaStore: 0: Opening raw store with implemenation class:org.apache.hadoop.hive.metastore.ObjectStore
    16/01/18 15:40:07 INFO ObjectStore: ObjectStore, initialize called
    16/01/18 15:40:07 WARN Persistence: Error creating validator of type org.datanucleus.properties.CorePropertyValidator
    ClassLoaderResolver for class "" gave error on creation : {1}
    org.datanucleus.exceptions.NucleusUserException: ClassLoaderResolver for class "" gave error on creation : {1}
    ……
    16/01/18 15:40:07 WARN Hive: Failed to access metastore. This class should not accessed in runtime.
    org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient
    ……
    16/01/18 15:40:07 INFO HiveMetaStore: 0: Opening raw store with implemenation class:org.apache.hadoop.hive.metastore.ObjectStore
    16/01/18 15:40:07 INFO ObjectStore: ObjectStore, initialize called
    16/01/18 15:40:07 WARN Persistence: Error creating validator of type org.datanucleus.properties.CorePropertyValidator
    ClassLoaderResolver for class "" gave error on creation : {1}
    org.datanucleus.exceptions.NucleusUserException: ClassLoaderResolver for class "" gave error on creation : {1}
    ……
    16/01/18 15:40:07 WARN HiveMetaStore: Retrying creating default database after error: Unexpected exception caught.
    javax.jdo.JDOFatalInternalException: Unexpected exception caught.
    ……
    16/01/18 15:40:07 INFO HiveMetaStore: 0: Opening raw store with implemenation class:org.apache.hadoop.hive.metastore.ObjectStore
    16/01/18 15:40:07 INFO ObjectStore: ObjectStore, initialize called
    16/01/18 15:40:07 WARN Persistence: Error creating validator of type org.datanucleus.properties.CorePropertyValidator
    ClassLoaderResolver for class "" gave error on creation : {1}
    org.datanucleus.exceptions.NucleusUserException: ClassLoaderResolver for class "" gave error on creation : {1}
    ……
    Exception in thread "main" java.lang.RuntimeException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient
    ……

    这三个文件存在于spark/lib中。

    三、运行配置JVM参数JAVA_OPTS (FATAL!)

    看起来Everything is OK。编译执行程序,却发生异常退出,而且只在最后报出main进程异常,没有任何ERROR,很难发现到底是什么原因。

    ……
    Exception in thread "main" 
    Process finished with exit code 1

    多次执行,会出现如下异常信息,重点在PermGen Space(持久加载区空间大小)。

    Exception in thread "main" java.lang.reflect.InvocationTargetException
        at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
        at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57)
        at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
        at java.lang.reflect.Constructor.newInstance(Constructor.java:526)
        at org.apache.spark.sql.hive.client.IsolatedClientLoader.liftedTree1$1(IsolatedClientLoader.scala:183)
        at org.apache.spark.sql.hive.client.IsolatedClientLoader.<init>(IsolatedClientLoader.scala:179)
        at org.apache.spark.sql.hive.HiveContext.metadataHive$lzycompute(HiveContext.scala:226)
        at org.apache.spark.sql.hive.HiveContext.metadataHive(HiveContext.scala:185)
        at org.apache.spark.sql.hive.HiveContext.setConf(HiveContext.scala:392)
        at org.apache.spark.sql.hive.HiveContext.defaultOverrides(HiveContext.scala:174)
        at org.apache.spark.sql.hive.HiveContext.<init>(HiveContext.scala:177)
        at WindowQueryTest$.main(WindowQueryTest.scala:14)
        at WindowQueryTest.main(WindowQueryTest.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:606)
        at com.intellij.rt.execution.application.AppMain.main(AppMain.java:140)
    Caused by: java.lang.OutOfMemoryError: PermGen space
        at org.apache.hadoop.hive.ql.metadata.Hive.getAllDatabases(Hive.java:1236)
        at org.apache.hadoop.hive.ql.metadata.Hive.reloadFunctions(Hive.java:174)
        at org.apache.hadoop.hive.ql.metadata.Hive.<clinit>(Hive.java:166)
        at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:503)
        at org.apache.spark.sql.hive.client.ClientWrapper.<init>(ClientWrapper.scala:171)
        ... 18 more
    
    Process finished with exit code 1

    再次编译执行,还可能出现更长的异常信息,错误可能会变化,但万变不离其宗,症结依旧是PermGen Space的大小!

    解决方法:在Run Configuration中添加JVM options:-server -Xms512M -Xmx1024M -XX:PermSize=256M -XX:MaxNewSize=512M -XX:MaxPermSize=512M

    image

    各个参数可以根据具体机器配置调整。

    四、WindowSpec指定窗口设置

    再看这个列子:

    import org.apache.spark.sql.expressions.Window
    import org.apache.spark.sql.functions._
    import org.apache.spark.sql.hive.HiveContext
    import org.apache.spark.{SparkConf, SparkContext}
    
    object WindowFunctions {
      def main(args: Array[String]) {
        val conf = new SparkConf().setAppName("Window Functions").setMaster("local")
        val sc = new SparkContext(conf)
        val hiveContext = new HiveContext(sc)
    
        import hiveContext.implicits._
    
        val l = (1997, 1) :: (1997, 4) :: (1998, 2) :: (1998, 3) :: (1999, 9) :: Nil
        val df = sc.parallelize(l).toDF("k", "v")
        val w = Window.orderBy($"k")
        val df1 = df.withColumn("No", rowNumber().over(w))
        val rowW = w.rowsBetween(-2, 0)
        val rangeW = w.rangeBetween(-1, 0)
        df1.withColumn("row", avg($"v").over(rowW)).withColumn("range", avg($"v").over(rangeW)).show
        sc.stop()
      }
    }

    得到结果:

    image

     

    org.apache.spark.sql.expressions.Window定义WindowSpec,并指定分组或者排序。

    @org.apache.spark.annotation.Experimental
    object Window extends scala.AnyRef {
      @scala.annotation.varargs
      def partitionBy(colName : scala.Predef.String, colNames : scala.Predef.String*) : org.apache.spark.sql.expressions.WindowSpec = { /* compiled code */ }
      @scala.annotation.varargs
      def partitionBy(cols : org.apache.spark.sql.Column*) : org.apache.spark.sql.expressions.WindowSpec = { /* compiled code */ }
      @scala.annotation.varargs
      def orderBy(colName : scala.Predef.String, colNames : scala.Predef.String*) : org.apache.spark.sql.expressions.WindowSpec = { /* compiled code */ }
      @scala.annotation.varargs
      def orderBy(cols : org.apache.spark.sql.Column*) : org.apache.spark.sql.expressions.WindowSpec = { /* compiled code */ }
    }

    定义的WindowSpec可以调用rowsBetween或者rangeBetween设置偏移量,定义窗口的区间范围;甚至也可以重置分组和排序。

    @org.apache.spark.annotation.Experimental
    class WindowSpec private[sql] (partitionSpec : scala.Seq[org.apache.spark.sql.catalyst.expressions.Expression], orderSpec : scala.Seq[org.apache.spark.sql.catalyst.expressions.SortOrder], frame : org.apache.spark.sql.catalyst.expressions.WindowFrame) extends scala.AnyRef {
      @scala.annotation.varargs
      def partitionBy(colName : scala.Predef.String, colNames : scala.Predef.String*) : org.apache.spark.sql.expressions.WindowSpec = { /* compiled code */ }
      @scala.annotation.varargs
      def partitionBy(cols : org.apache.spark.sql.Column*) : org.apache.spark.sql.expressions.WindowSpec = { /* compiled code */ }
      @scala.annotation.varargs
      def orderBy(colName : scala.Predef.String, colNames : scala.Predef.String*) : org.apache.spark.sql.expressions.WindowSpec = { /* compiled code */ }
      @scala.annotation.varargs
      def orderBy(cols : org.apache.spark.sql.Column*) : org.apache.spark.sql.expressions.WindowSpec = { /* compiled code */ }
      def rowsBetween(start : scala.Long, end : scala.Long) : org.apache.spark.sql.expressions.WindowSpec = { /* compiled code */ }
      def rangeBetween(start : scala.Long, end : scala.Long) : org.apache.spark.sql.expressions.WindowSpec = { /* compiled code */ }
      private[sql] def withAggregate(aggregate : org.apache.spark.sql.Column) : org.apache.spark.sql.Column = { /* compiled code */ }
    }

    最后通过具体的窗口函数计算得到需要的列。

    References:

    [1] https://databricks.com/blog/2015/07/15/introducing-window-functions-in-spark-sql.html

    [2] http://www.cnblogs.com/mingforyou/archive/2012/03/03/2378143.html

    [3] http://sonra.io/window-functions-aka-analytic-functions-in-spark/

    END

  • 相关阅读:
    vmware安装后设置网络
    博客园添加视频
    博客园音乐插件
    去除数组空格 php
    Jmeter 中多线程并发和循环控制器
    Jmeter对返回体中Json格式的reponse的处理
    Jmeter 抓app包 抓到一半不好用了
    Jmeter ResponseAssertion 【Ignore Status】
    JMeter源码导入到Intellij IDEA
    Jmeter 处理Unicode编码转为中文
  • 原文地址:https://www.cnblogs.com/kevingu/p/5140242.html
Copyright © 2011-2022 走看看