无重叠区间
给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。
注意:
- 可以认为区间的终点总是大于它的起点。
- 区间 [1,2] 和 [2,3] 的边界相互"接触",但没有相互重叠。
示例 1:
输入: [ [1,2], [2,3], [3,4], [1,3] ]
输出: 1
解释: 移除 [1,3] 后,剩下的区间没有重叠。
示例 2:
输入: [ [1,2], [1,2], [1,2] ]
输出: 2
解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。
示例 3:
输入: [ [1,2], [2,3] ]
输出: 0
解释: 你不需要移除任何区间,因为它们已经是无重叠的了。
【题目分析】
这个题目与《算法导论》中活动安排的题目非常类似。
活动选择问题
有n个需要在同一天使用同一个教室的活动a1,a2,…,an,教室同一时刻只能由一个活动使用。每个活动ai都有一个开始时间si和结束时间fi 。一旦被选择后,活动ai就占据半开时间区间[si,fi)。如果[si,fi]和[sj,fj]互不重叠,ai和aj两个活动就可以被安排在这一天。该问题就是要安排这些活动使得尽量多的活动能不冲突的举行。例如下图所示的活动集合S,其中各项活动按照结束时间单调递增排序。
考虑使用贪心算法的解法。为了方便,我们用不同颜色的线条代表每个活动,线条的长度就是活动所占据的时间段,蓝色的线条表示我们已经选择的活动;红色的线条表示我们没有选择的活动。
如果我们每次都选择开始时间最早的活动,不能得到最优解:
如果我们每次都选择持续时间最短的活动,不能得到最优解:
可以用数学归纳法证明,我们的贪心策略应该是每次选取结束时间最早的活动。直观上也很好理解,按这种方法选择相容活动为未安排活动留下尽可能多的时间。这也是把各项活动按照结束时间单调递增排序的原因。
【思路】
参照上面活动安排的例子,我们很容易得到这个题目的解法。这是一个贪心问题,我们每次都找到那个结束点最小的区间,然后依次向后找那些与前面区间不冲突且结束点早的区间。这个过程中我们把局部的最优解合并成了全局的最优解。
1 /** 2 * Definition for an interval. 3 * public class Interval { 4 * int start; 5 * int end; 6 * Interval() { start = 0; end = 0; } 7 * Interval(int s, int e) { start = s; end = e; } 8 * } 9 */ 10 public class Solution { 11 public int eraseOverlapIntervals(Interval[] intervals) { 12 if(intervals.length == 0) return 0; 13 14 Comparator<Interval> comp = new Comparator<Interval>() { 15 public int compare(Interval interval1, Interval interval2) { 16 if(interval1.end > interval2.end) return 1; 17 else if(interval1.end < interval2.end) return -1; 18 else return 0; 19 } 20 }; 21 22 Arrays.sort(intervals, comp); 23 int lastend = intervals[0].end; 24 int remove = 0; 25 for(int i = 1; i < intervals.length; i++) { 26 if(intervals[i].end == lastend) remove++; 27 else if(intervals[i].start < lastend) remove++; 28 else lastend = intervals[i].end; 29 } 30 31 return remove; 32 } 33 }