zoukankan      html  css  js  c++  java
  • BP神经网络

    算法原理

    参数更新公式(梯度下降)

    [upsilon gets upsilon + Delta upsilon ]


    针对隐层到输出层的连接权

    实际上,三层网络可以记为

    [g_k(x) = f_2(sum_{j=1}^{l} omega_{kj} f_1(sum_{i=1}^{d} omega_{ji} x_i + omega_{j0}) + omega _{k0}) ]

    因此可继续推得
    1.

    [Delta heta_{j} = -eta frac{partial E_k}{partial heta_{j}} \ = -eta frac{partial E_k}{partial hat{y_j}^k} frac{{partial hat{y_j}^k}}{partial eta_j} frac{partial eta_j}{partial heta_j} \ = -eta g_j * 1\ = -eta g_j ]

    [Delta V_{ih} = -etafrac{partial E_k}{partial hat{y_{1...j}}^k} frac{partial hat{y_{1...j}}^k}{partial b_n} frac{partial b_n}{partial alpha_n} frac{partial alpha_n}{partial v_{ih}} \ =-etasum_{j=1}^{l} frac{partial E_k}{partial hat{y_{j}}^k} frac{partial hat{y_{j}}^k}{partial b_n} frac{partial b_n}{partial alpha_n} frac{partial alpha_n}{partial v_{ih}} \ =-eta x_i sum_{j=1}^{l} frac{partial E_k}{partial hat{y_{j}}^k} frac{partial hat{y_{j}}^k}{partial b_n} frac{partial b_n}{partial alpha_n} \ = eta e_h x_i ]

    [e_h = -sum_{j=1}^{l} frac{partial E_k}{partial hat{y_{j}}^k} frac{partial hat{y_{j}}^k}{partial b_n} frac{partial b_n}{partial alpha_n} \ = b_n(1-b_n) sum_{j=1}^{l} omega_{hj} g_j ]

    可类似1得

    [Delta gamma_h = -eta e_h ]


    参考文献

    《机器学习》,周志华著

  • 相关阅读:
    jQuery事件
    jQuery选择器
    jQuery对象和语法
    jQuery简介
    残差的正态性检验——概率图和QQ-plot图
    https://oldpan.me/深度学习博客
    深度学习的内存消耗在哪里?
    图片缩放
    随机梯度下降批尺寸的影响
    利用PIL.ImageOps.invert实现二值图像黑白反转
  • 原文地址:https://www.cnblogs.com/kexve/p/11884982.html
Copyright © 2011-2022 走看看