就其本质而言,正则表达式(或 RE)是一种小型的、高度专业化的编程语言,(在Python中)它内嵌在Python中,并通过 re 模块实现。正则表达式模式被编译成一系列的字节码,然后由用 C 编写的匹配引擎执行。
字符匹配(普通字符,元字符):
1 普通字符:大多数字符和字母都会和自身匹配
>>> re.findall('alvin','yuanaleSxalexwupeiqi')
['alvin']
2 元字符:. ^ $ * + ? { } [ ] | ( )
元字符之. ^ $ * + ? { }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
import re ret = re.findall( 'a..in' , 'helloalvin' ) print (ret) #['alvin'] ret = re.findall( '^a...n' , 'alvinhelloawwwn' ) print (ret) #['alvin'] ret = re.findall( 'a...n$' , 'alvinhelloawwwn' ) print (ret) #['awwwn'] ret = re.findall( 'a...n$' , 'alvinhelloawwwn' ) print (ret) #['awwwn'] ret = re.findall( 'abc*' , 'abcccc' ) #贪婪匹配[0,+oo] print (ret) #['abcccc'] ret = re.findall( 'abc+' , 'abccc' ) #[1,+oo] print (ret) #['abccc'] ret = re.findall( 'abc?' , 'abccc' ) #[0,1] print (ret) #['abc'] ret = re.findall( 'abc{1,4}' , 'abccc' ) print (ret) #['abccc'] 贪婪匹配 |
注意:前面的*,+,?等都是贪婪匹配,也就是尽可能匹配,后面加?号使其变成惰性匹配
1
2
|
ret = re.findall( 'abc*?' , 'abcccccc' ) print (ret) #['ab'] |
元字符之字符集[]:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
#--------------------------------------------字符集[] ret = re.findall( 'a[bc]d' , 'acd' ) print (ret) #['acd'] ret = re.findall( '[a-z]' , 'acd' ) print (ret) #['a', 'c', 'd'] ret = re.findall( '[.*+]' , 'a.cd+' ) print (ret) #['.', '+'] #在字符集里有功能的符号: - ^ ret = re.findall( '[1-9]' , '45dha3' ) print (ret) #['4', '5', '3'] ret = re.findall( '[^ab]' , '45bdha3' ) print (ret) #['4', '5', 'd', 'h', '3'] ret = re.findall( '[d]' , '45bdha3' ) print (ret) #['4', '5', '3'] |
元字符之转义符
反斜杠后边跟元字符去除特殊功能,比如.
反斜杠后边跟普通字符实现特殊功能,比如d
d 匹配任何十进制数;它相当于类 [0-9]。
D 匹配任何非数字字符;它相当于类 [^0-9]。
s 匹配任何空白字符;它相当于类 [
fv]。
S 匹配任何非空白字符;它相当于类 [^
fv]。
w 匹配任何字母数字字符;它相当于类 [a-zA-Z0-9_]。
W 匹配任何非字母数字字符;它相当于类 [^a-zA-Z0-9_]
匹配一个特殊字符边界,比如空格 ,&,#等
1
2
3
4
|
ret = re.findall( 'I' , 'I am LIST' ) print (ret) #[] ret = re.findall(r 'I' , 'I am LIST' ) print (ret) #['I'] |
现在我们聊一聊\,先看下面两个匹配:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
#-----------------------------eg1: import re ret = re.findall( 'cl' , 'abcle' ) print (ret) #[] ret = re.findall( 'c\l' , 'abcle' ) print (ret) #[] ret = re.findall( 'c\\l' , 'abcle' ) print (ret) #['c\l'] ret = re.findall(r 'c\l' , 'abcle' ) print (ret) #['c\l'] #-----------------------------eg2: #之所以选择是因为在ASCII表中是有意义的 m = re.findall( 'blow' , 'blow' ) print (m) m = re.findall(r 'blow' , 'blow' ) print (m) |
元字符之分组()
1
2
3
4
5
6
|
m = re.findall(r '(ad)+' , 'add' ) print (m) ret = re.search( '(?P<id>d{2})/(?P<name>w{3})' , '23/com' ) print (ret.group()) #23/com print (ret.group( 'id' )) #23 |
元字符之|
1
2
|
ret = re.search( '(ab)|d' , 'rabhdg8sd' ) print (ret.group()) #ab |
re模块下的常用方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
import re #1 re.findall( 'a' , 'alvin yuan' ) #返回所有满足匹配条件的结果,放在列表里 #2 re.search( 'a' , 'alvin yuan' ).group() #函数会在字符串内查找模式匹配,只到找到第一个匹配然后返回一个包含匹配信息的对象,该对象可以 # 通过调用group()方法得到匹配的字符串,如果字符串没有匹配,则返回None。 #3 re.match( 'a' , 'abc' ).group() #同search,不过尽在字符串开始处进行匹配 #4 ret = re.split( '[ab]' , 'abcd' ) #先按'a'分割得到''和'bcd',在对''和'bcd'分别按'b'分割 print (ret) #['', '', 'cd'] #5 ret = re.sub( 'd' , 'abc' , 'alvin5yuan6' , 1 ) print (ret) #alvinabcyuan6 ret = re.subn( 'd' , 'abc' , 'alvin5yuan6' ) print (ret) #('alvinabcyuanabc', 2) #6 obj = re. compile ( 'd{3}' ) ret = obj.search( 'abc123eeee' ) print (ret.group()) #123 |
1
2
3
4
5
6
|
import re ret = re.finditer( 'd' , 'ds3sy4784a' ) print (ret) #<callable_iterator object at 0x10195f940> print ( next (ret).group()) print ( next (ret).group()) |
注意:
1
2
3
4
5
6
7
|
import re ret = re.findall( 'www.(baidu|oldboy).com' , 'www.oldboy.com' ) print (ret) #['oldboy'] 这是因为findall会优先把匹配结果组里内容返回,如果想要匹配结果,取消权限即可 ret = re.findall( 'www.(?:baidu|oldboy).com' , 'www.oldboy.com' ) print (ret) #['www.oldboy.com'] |