zoukankan      html  css  js  c++  java
  • Longest Consecutive Sequence

    Problem Statement

    • Given an unsorted array of integers, find the length of the longest consecutive elements sequence.
    • For example,  Given [100, 4, 200, 1, 3, 2],  The longest consecutive elements sequence is [1, 2, 3, 4]. Return its length: 4.
    • Your algorithm should run in $O(n)$ complexity.

    There's a easy $O(nlog{n})$ solution.

    We will define a hash table mp, and we initialize the hash table with 1:

    unordered_map<int, int> mp;
    for(int i = 0; i < n; ++i)
        mp[A[i]] = 1;
    

    The value of mp, mp[A[i]] just means the maximum length of consecutive sequence in which the maximum element is A[i].

    So at beginning, every element itself is a consecutive element, and the maximum length of consecutive sequence ended by A[i] is 1.

    Then, for each element A[i] in A, we search its one less element A[i]-1. If it exists, we add the mp[A[i]], i.e.

    ++mp[A[i]]
    

    Beacause the map is ordered by A[i], these operations can gurantee the increment of mp[A[i]] is beginning at the minimum element. Thus the algorithm is correct.


    The $O(n)$ solving method:

    Our algorithm is to abstract every connected component(consecutive sequence) out of array A.

    For every element $A[i] in C_i = [C_{min}, C_{max}] subseteq A$, we search it from $A[i]$ to its upper bound $C_{max}$, and search it to its lower bound $C_{min}$.

    We first use a hash table to store every element in A as key. And we use true as this key's entry.

    unordered_map<int, bool> mp;
    for(int i = 0; i < length; ++i)
        mp[num[i]] = true;
    

    Then, every time we access one element A[i], we erase it from mp, because it's one element of connected component $C_i$. Then we find if A[i+1] is exsiting in mp. If it is, we erase it from mp, and add the length of $C_i$, ++$lenC_i$. And keep going until we can't find the next bigger element in mp.

    int consecutiveLength = 1;  //A[i] itself is a consecutive sequence
    int findNum = A[i];
    mp.erase(findNum);
    
    while(mp.find(mp[findNum+1]) != mp.end()){
        ++consecutiveLength;
        ++findNum;  //make findNum pointer to next bigger element
        mp.erase(findNum);
    }
    

    Then, we search to the lower bound of $C_i$ from $A[i]$ with the same method.

    findNum = A[i];
    while(mp.find(findNum-1) != mp.end()){
        ++consecutiveLength;
        --findNum;  //make findNum pointer to next smaller element
        mp.erase(findNum);
    }
    

    If the current consecutive length is bigger than sum before, we update the sum.

    So, based on the above statement, we can iterate through the array to abstract every connected component out of array A. With the constraint of running time $O(n)$, each time we access the element A[i], we only do the search we A[i] is still in mp.


     The complete code is below:

    int longestConsecutive(vector<int> &num) {
        int length = num.size();
        if(0 == length) return 0;
        
        unordered_map<int, bool> mp;
        for(int i = 0; i < length; ++i){
            mp[num[i]] = true;
        }
        
        int res = 0;
        for(int i = 0; i < length; ++i){
            if(mp.find(num[i]) == mp.end()) continue;
            
            int consecutiveLength = 1;
            int findNum = num[i];
            
            mp.erase(findNum);
            
            while(mp.find(findNum+1) != mp.end()){
                ++consecutiveLength;
                ++findNum;
                mp.erase(findNum);
            }
            
            findNum = num[i];
            while(mp.find(findNum-1) != mp.end()){
                ++consecutiveLength;
                --findNum;
                mp.erase(findNum);
            }
            
            res = consecutiveLength > res ? consecutiveLength : res ;
        }
        
        return res;
        
    }
    
  • 相关阅读:
    在MVC中更新ModelFirst Entity Framework POCO实体外键的方法
    美国行照片集十四:洛杉矶拉斯维加斯之旅
    深入ASP.NET MVC之三:Controller的激活
    美国行照片集之十三:感恩节之旅
    深入ASP.NET MVC 之一:IIS到路由表
    博客样式改版
    关于如何用string保存二进制数据的问题
    XSI IPC机制的优缺点
    C,C++,java,python对比
    grunt requireJS 的基础配置
  • 原文地址:https://www.cnblogs.com/kid551/p/4114564.html
Copyright © 2011-2022 走看看