zoukankan      html  css  js  c++  java
  • 2017-2018 ACM-ICPC, Asia Daejeon Regional Contest PART(10/12)

    $$2017-2018 ACM-ICPC, Asia Daejeon Regional Contest$$

    (A.Broadcast Stations)

    (B.Connect3)

    BFS+哈希判重,哈希就用一个16位的三进制数表示即可

    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    using LL = int_fast64_t;
    struct Matrix{
        int mat[4][4],stp[4];
        LL hashval;
        int curcol;
        Matrix(){
            memset(mat,0,sizeof(mat));
            memset(stp,0,sizeof(stp));
            hashval = curcol = 0;
        }
    };
    set<int> vis;
    int st,edx,edy;
    LL powt[20];
    int check(const Matrix& M){
        for(int i = 0; i < 4; i++){
            for(int j = 0; j < 2; j++){
                if(M.mat[i][j]&&M.mat[i][j]==M.mat[i][j+1]&&M.mat[i][j]==M.mat[i][j+2]) return M.mat[i][j];
                if(M.mat[j][i]&&M.mat[j][i]==M.mat[j+1][i]&&M.mat[j][i]==M.mat[j+2][i]) return M.mat[j][i];
            }
        }
        int sx[4] = {0,1,0,1};
        int sy[4] = {0,0,1,1};
        for(int i = 0; i < 4; i++){
            int x = sx[i], y = sy[i];
            if(M.mat[x][y]&&M.mat[x][y]==M.mat[x+1][y+1]&&M.mat[x][y]==M.mat[x+2][y+2]) return M.mat[x][y];
        }
        sy[0] = 2, sy[1] = 3, sy[2] = 3, sy[3] = 2;
        for(int i = 0; i < 4; i++){
            int x = sx[i], y = sy[i];
            if(M.mat[x][y]&&M.mat[x][y]==M.mat[x+1][y-1]&&M.mat[x][y]==M.mat[x+2][y-2]) return M.mat[x][y];
        }
        return 0;
    }
    int bfs(){
        int tot = 0;
        queue<Matrix> que;
        Matrix start;
        start.mat[st][0] = 1;
        start.curcol = 1;
        start.hashval += powt[4*st];
        start.stp[st] = 1;
        vis.insert(start.hashval);
        que.push(start);
        while(!que.empty()){
            Matrix now = que.front();
            que.pop();
            int color = now.curcol ^ 3;
            LL hax = now.hashval;
            for(int i = 0; i < 4; i++){
                int stpos = now.stp[i];
                if(stpos==4) continue;
                if(i==edx&&stpos==edy){
                    if(color==1) continue;
                    LL curhash = hax + powt[4*i+stpos] * color;
                    if(vis.count(curhash)) continue;
                    else vis.insert(curhash);
                    now.mat[i][stpos] = color;
                    if(check(now)) tot++;
                    now.mat[i][stpos] = 0;
                }
                else{
                    LL curhash = hax + powt[4*i+stpos] * color;
                    if(vis.count(curhash)) continue;
                    else vis.insert(curhash);
                    now.mat[i][stpos] = color;
                    if(!check(now)){
                        now.stp[i]++;
                        now.hashval = curhash;
                        now.curcol ^= 3;
                        que.push(now);
                        now.curcol ^= 3;
                        now.hashval = hax;
                        now.stp[i]--;
                    }
                    now.mat[i][stpos] = 0;
                }
            }
        }
        return tot;
    }
    int main(){
        scanf("%d %d %d",&st,&edx,&edy);
        st--,edx--, edy--;
        edx^=edy^=edx^=edy;
        powt[0] = 1;
        for(int i = 1; i <= 18; i++) powt[i] = powt[i-1] * 10;
        printf("%d
    ",bfs());
        return 0;
    }
    

    (C.Game Map)

    先按无向图连边,然后按边连着的两个点的度数重新构图,然后跑记忆化搜索即可

    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 3e5+7;
    int n,m,deg[MAXN],f[MAXN];
    vector<int> G[MAXN],newG[MAXN];
    void rebuild(){
        for(int u = 1; u <= n; u++){
            for(int v : G[u]){
                if(deg[v]>deg[u]) newG[u].emplace_back(v);
            }
        }
    }
    int solve(int u){
        if(f[u]!=-1) return f[u];
        f[u] = 0;
        for(int v : newG[u]) f[u] = max(f[u],solve(v));
        f[u]++;
        return f[u];
    }
    int main(){
        scanf("%d %d",&n,&m);
        for(int i = 1; i <= m; i++){
            int u,v;
            scanf("%d %d",&u,&v);
            u++, v++;
            G[u].emplace_back(v);
            G[v].emplace_back(u);
            deg[u]++; deg[v]++;
        }
        rebuild();
        memset(f,255,sizeof(f));
        for(int i = 1; i <= n; i++) if(f[i]==-1) solve(i);
        printf("%d
    ",*max_element(f+1,f+1+n));
        return 0;
    }
    

    (D.Happy Number)

    打表找规律

    #include <bits/stdc++.h>
    using namespace std;
    
    map<int, int> mp;
    int main(){
        int n; cin>>n;
        mp[1]++,mp[19]++,mp[82]++,mp[68]++,mp[100]++;
        int t=5;
        while(t--){
            for(int i=1;i<=999;i++){
                int tmp=i, s=0;
                while(tmp){
                    s+=(tmp%10)*(tmp%10);
                    tmp/=10;
                }
                if(mp.count(s)){
                    mp[i]++;
                }
            }
        }
        int tmp=n, s=0;
        while(tmp){
            s+=(tmp%10)*(tmp%10);
            tmp/=10;
        }
        if(mp[s])cout<<"HAPPY";
        else cout<<"UNHAPPY";
        return 0;
    }
    

    (E.How Many to Be Happy?)

    对于题给的每一条边,问最少删掉几条边能使这条边出现在最小生成树中
    按照Kruskal的方法建最小生成树的时候,是贪心地优先考虑权值小的边,判断这条边连接的两个点是否已经联通。
    现在如果要选定一条边加进去,那么必然在遍历到它之前,这条边所连的两个点没有联通,使得这两个点不连通所删掉的最少边就是答案,其实就是最小割的模型,考虑把所有小于该边权值的边加到图中然后跑最大流即可

    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 555;
    const int INF = 0x3f3f3f3f;
    int n,m,rk[MAXN],iter[MAXN];
    pair<pair<int,int>,int> es[MAXN];
    struct EDGE{
        int to,cap,rev;
        EDGE(){}
        EDGE(int _to, int _cap, int _rev){
            to = _to;
            cap = _cap;
            rev = _rev;
        }
    };
    vector<EDGE> G[MAXN];
    void ADDEDGE(int u, int v, int cap){
        G[u].emplace_back(EDGE(v,cap,(int)G[v].size()));
        G[v].emplace_back(EDGE(u,0,(int)G[u].size()-1));
    }
    bool BFS(int S, int T){
        queue<int> que;
        memset(iter,0,sizeof(iter));
        memset(rk,0,sizeof(rk));
        rk[S] = 1;
        que.push(S);
        while(!que.empty()){
            int u = que.front();
            que.pop();
            for(auto e : G[u]){
                if(!e.cap || rk[e.to]) continue;
                rk[e.to] = rk[u] + 1;
                que.push(e.to);
            }
        }
        return rk[T]!=0;
    }
    int dfs(int u, int T, int f){
        if(u==T) return f;
        for(int &i = iter[u]; i < (int)G[u].size(); i++){
            EDGE &e = G[u][i];
            if(!e.cap || rk[e.to]!=rk[u]+1) continue;
            int d = dfs(e.to,T,min(f,e.cap));
            if(d){
                e.cap -= d;
                G[e.to][e.rev].cap += d;
                return d;
            }
        }
        return 0;
    }
    int Dinic(int S, int T){
        int flow = 0;
        while(BFS(S,T)){
            int d = dfs(S,T,INF);
            while(d){
                flow += d;
                d = dfs(S,T,INF);
            }
        }
        return flow;
    }
    int solve(int ID){
        for(int i = 0; i < MAXN; i++) G[i].clear();
        int S = es[ID].first.first, T = es[ID].first.second;
        for(int i = 1; i <= m; i++){
            if(es[i].second>=es[ID].second) break;
            ADDEDGE(es[i].first.first,es[i].first.second,1);
            ADDEDGE(es[i].first.second,es[i].first.first,1);
        }
        return Dinic(S,T);
    }
    int main(){
        scanf("%d %d",&n,&m);
        for(int i = 1; i <= m; i++) scanf("%d %d %d",&es[i].first.first,&es[i].first.second,&es[i].second);
        sort(es+1,es+1+m,[](const pair<pair<int,int>,int> &A, const pair<pair<int,int>,int> &B){
            return A.second < B.second;
        });
        int res = 0;
        for(int i = 1; i <= m; i++) res += solve(i);
        printf("%d
    ",res);
        return 0;
    }
    

    (F.Philosopher's Walk)

    按每一步所在块的位置(1/4为1块)递归即可,注意坐标变换

    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    int n,m;
    pair<int,int> solve(int k, int step){
        if(k==1){
            if(step==1) return make_pair(1,1);
            else if(step==2) return make_pair(1,2);
            else if(step==3) return make_pair(2,2);
            else return make_pair(2,1);
        }
        int tot = (1<<k)<<k;
        int perstep = tot>>2;
        if(step>perstep*3){
            auto p = solve(k-1,step-perstep*3);
            return make_pair((1<<k)+1-p.second,(1<<(k-1))+1-p.first);
        }
        else if(step>perstep*2){
            auto p = solve(k-1,step-perstep*2);
            return make_pair((1<<(k-1))+p.first,(1<<(k-1))+p.second);
        }
        else if(step>perstep){
            auto p = solve(k-1,step-perstep);
            return make_pair(p.first,(1<<(k-1))+p.second);
        }
        else{
            auto p = solve(k-1,step);
            return make_pair(p.second,p.first);
        }
    }
    int main(){
        scanf("%d %d",&n,&m);
        auto p = solve(log2(n),m);
        printf("%d %d
    ",p.first,p.second);
        return 0;
    }
    

    (G.Rectilinear Regions)

    给出两条阶梯型折线,问B线在A线上面所围成的面积有多少,一共有多少块围成的区域
    如果两折线的单调性不一样的话就直接输出0,如果都是单调递减的话把两条线都关于x轴对称翻着就是两个单调递增的阶梯折线了
    扫描一遍就完了

    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int INF = 0x3f3f3f3f;
    const int MAXN = 1e5+7;
    using LL = int_fast64_t;
    int ya,yb,n,m,tot,x;
    pair<pair<int,int>,int> vert[MAXN<<1];
    int main(){
        scanf("%d %d",&n,&m);
        int d1,d2;
        scanf("%d",&ya);
        for(int i = 1; i <= n; i++){
            tot++;
            vert[tot].second = 0;
            scanf("%d %d",&vert[tot].first.first,&vert[tot].first.second);
            d1 = vert[tot].first.second>ya?1:-1;
        }
        scanf("%d",&yb);
        for(int i = 1; i <= m; i++){
            tot++;
            vert[tot].second = 1;
            scanf("%d %d",&vert[tot].first.first,&vert[tot].first.second);
            d2 = vert[tot].first.second>yb?1:-1;
        }
        if(d1!=d2) return puts("0 0"), 0;
        if(d1<0){
            ya *= -1;
            yb *= -1;
            swap(ya,yb);
            for(int i = 1; i <= tot; i++) {
                vert[i].first.second *= -1;
                vert[i].second ^= 1;
            }
        }
        sort(vert+1,vert+1+tot,[](const pair<pair<int,int>,int> &A, const pair<pair<int,int>,int> &B){
            return A.first.first < B.first.first;
        });
        int cur = 1;
        while(cur <= tot){
            int tpya = ya;
            int tpyb = yb;
            if(vert[cur].second==1){
                tpyb = vert[cur].first.second;
                if(ya<yb) ya = tpya, yb = tpyb;
                else{
                    if(tpya<tpyb){
                        x = vert[cur].first.first;
                        ya = tpya, yb = tpyb;
                        cur++;
                        break;
                    }
                    else ya = tpya,yb = tpyb;
                }
            }
            else ya = vert[cur].first.second;
            cur++;
        }
        LL area = 0, tparea = 0, regions = 0;
        bool tag = true;
        for(int i = cur; i <= tot; i++){
            if(vert[i].second==0){
                if(tag){
                    tparea += 1ll * (vert[i].first.first-x) * (yb-ya);
                    ya = vert[i].first.second;
                    x = vert[i].first.first;
                    if(ya>=yb){
                        tag = false;
                        area += tparea;
                        regions++;
                        tparea = 0;
                    }
                }
                else{
                    ya = vert[i].first.second;
                    x = vert[i].first.first;
                }
            }
            else{
                if(tag){
                    tparea += 1ll * (vert[i].first.first-x) * (yb-ya);
                    yb = vert[i].first.second;
                    x = vert[i].first.first;
                }
                else{
                    yb = vert[i].first.second;
                    x = vert[i].first.first;
                    if(yb>ya) tag = true;
                }
            }
        }
        printf("%I64d %I64d
    ",regions,area);
        return 0;
    }
    

    (H.Rock Paper Scissors)

    先把字符串转化一下,把要匹配的字符变成相同字符,把每个字符分开来考虑,然后把两个字符串看作两个多项式(f(x),g(x)),把当前考虑匹配的字符的系数设为(1),不是需要匹配的系数设为(0),则初始匹配点为(pos)答的案就是(ans[pos]=sum_{i=0}^{m-1}f[pos+i]*g[i])
    把第二个串翻转得到:(ans[pos]=sum_{i=0}^{m-1}f[pos+i]g[m-1-i])答案就是(f)(g)卷积的第(pos+m-1)次项的系数
    分三次每次做三次FFT即可

    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 4e5+7;
    const double Pi = acos(-1);
    int n,m,limit,l,r[MAXN],ans[MAXN];
    char s[MAXN],t[MAXN];
    char RSP[3] = {'R','S','P'};
    struct Complex{
        double x,y;
        Complex(double _x = 0, double _y = 0){ x = _x; y = _y; }
        Complex operator + (const Complex rhs){ return Complex(x+rhs.x,y+rhs.y); }
        Complex operator - (const Complex rhs){ return Complex(x-rhs.x,y-rhs.y); }
        Complex operator * (const Complex rhs){ return Complex(x*rhs.x-y*rhs.y,x*rhs.y+y*rhs.x); }
    }A[MAXN],B[MAXN];
    void FFT(Complex *arr, int inv){
        for(int i = 0; i < limit; i++) if(i<r[i]) swap(arr[i],arr[r[i]]);
        for(int len = 1; len < limit; len <<= 1){
            Complex wn(cos(Pi/len),inv*sin(Pi/len));
            for(int R = 0; R < limit; R += (len<<1)){
                Complex w(1,0);
                for(int i = R; i < R+len; i++,w = w*wn){
                    Complex x = arr[i];
                    Complex y = w * arr[i+len];
                    arr[i] = x + y;
                    arr[i+len] = x - y;
                }
            }
        }
    }
    int main(){
        scanf("%d %d %s %s",&n,&m,s,t);
        for(int i = 0; i < m; i++){
            if(t[i]=='R') t[i] = 'S';
            else if(t[i]=='S') t[i] = 'P';
            else t[i] = 'R';
        }
        limit = 1, l = 0;
        while(limit<=n+m) limit <<= 1, l++;
        for(int i = 0; i < limit; i++) r[i] = ((r[i>>1]>>1) | ((i&1)<<(l-1)));
        reverse(t,t+m);
        for(int ch = 0; ch < 3; ch++){
            for(int i = 0; i < limit; i++){
                A[i].x = A[i].y = 0;
                B[i].x = B[i].y = 0;
            }
            for(int i = 0; i < n; i++) if(s[i]==RSP[ch]) A[i].x = 1;
            for(int i = 0; i < m; i++) if(t[i]==RSP[ch]) B[i].x = 1;
            FFT(A,1);
            FFT(B,1);
            for(int i = 0; i < limit; i++) A[i] = A[i] * B[i];
            FFT(A,-1);
            for(int i = 0; i < limit; i++) ans[i] += (int)(A[i].x/limit+0.5);
        }
        int maxx = 0;
        for(int i = 0; i < n; i++) maxx = max(maxx,ans[m+i-1]);
        printf("%d
    ",maxx);
        return 0;
    }
    

    (I.Slot Machines)

    找起始位置+最小循环节的最小值,可以把每个位置开始的最小循环节找出来然后枚举一下即可
    把串翻转然后建出Next数组,i点开始向前的最小循环节长度就是(i-next[i])

    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 1e6+7;
    int n,k,p,A[MAXN],f[MAXN];
    int main(){
        scanf("%d",&n);
        for(int i = 1; i <= n; i++) scanf("%d",&A[i]);
        int len = 0, ptr = 2;
        k = n-1, p = 1;
        reverse(A+1,A+1+n);
        f[1] = 0;
        while(ptr<=n){
            if(A[ptr]==A[len+1]) f[ptr++] = ++len;
            else{
                if(len) len = f[len];
                else f[ptr++] = len;
            }
        }
        for(int i = 1; i <= n; i++){
            int tp = i - f[i];
            int tk = n - i;
            if(tp+tk<p+k||(tp+tk==p+k&&p>tp)){
                p = tp;
                k = tk;
            }
        }
        printf("%d %d
    ",k,p);
        return 0;
    }
    

    (J.Strongly Matchable)

    (K.Untangling Chain)

    和初始长度无关,只和方向有关,考虑从当前点开始往某个方向延伸出一条边,到达某个终止位置,只要这个位置的两侧都没有任何其他点,下一次折线必然可以选出一个性质相同的位置,记录两个坐标轴访问最左端的位置和最右端的位置即可。

    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 2e5+7;
    const int O = 1e5;
    int n,xmin,xmax,ymin,ymax;
    int main(){
        scanf("%d",&n);
        int curdir = 0, cx = O, cy = O;
        xmin = xmax = ymin = ymax = O;
        for(int i = 1; i <= n; i++){
            if(curdir==0){
                printf("%d ",ymax+1-cy);
                ymax = cy = ymax+1;
            }
            else if(curdir==1){
                printf("%d ",xmax+1-cx);
                xmax = cx = xmax+1;
            }
            else if(curdir==2){
                printf("%d ",cy-ymin+1);
                ymin = cy = ymin-1;
            }
            else if(curdir==3){
                printf("%d ",cx-xmin+1);
                xmin = cx = xmin-1;
            }
            int dir;
            scanf("%d %d",&dir,&dir);
            curdir = (curdir+dir+4)%4;
        }
        puts("");
        return 0;
    }
    

    (L.Vacation Plans)

    枚举天数找最短路,天数上限大概是(n^3)

    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 55;
    const int MAXNP = MAXN * MAXN * MAXN;
    using LL = int_fast64_t;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    int p;
    struct Country{
        int n,m,h[MAXN],airport;
        LL f[MAXNP][MAXN];
        struct EDGE{
            int u, v, c;
            EDGE(){}
            EDGE(int _u, int _v, int _c){ u = _u, v = _v, c = _c; }
        };
        vector<EDGE> G;
    }cont[4];
    int main(){
        scanf("%d",&p);
        for(int pp = 1; pp <= p; pp++){
            scanf("%d %d",&cont[pp].n,&cont[pp].m);
            for(int i = 1; i <= cont[pp].n;i++) scanf("%d",&cont[pp].h[i]);
            for(int i = 1; i <= cont[pp].m; i++){
                int u, v, c;
                scanf("%d %d %d",&u,&v,&c);
                cont[pp].G.emplace_back(Country::EDGE(u,v,c));
            }
            scanf("%d",&cont[pp].airport);
        }
        for(int k = 1; k <= p; k++){
            memset(cont[k].f,INF,sizeof(cont[k].f));
            cont[k].f[0][1] = 0;
            for(int day = 1; day < MAXNP; day++){
                for(int i = 1; i <= cont[k].n; i++) cont[k].f[day][i] = min(cont[k].f[day][i],cont[k].f[day-1][i]+cont[k].h[i]);
                for(auto e : cont[k].G) cont[k].f[day][e.v] = min(cont[k].f[day][e.v],cont[k].f[day-1][e.u]+e.c);
            }
        }
        LL res = INF;
        for(int i = 0; i < MAXNP; i++){
            LL tot = 0;
            for(int k = 1; k <= p; k++){
                if(cont[k].f[i][cont[k].airport]==INF){
                    tot = INF;
                    break;
                }
                tot += cont[k].f[i][cont[k].airport];
            }
            res = min(res,tot);
        }
        printf("%I64d
    ",res);
        return 0;
    }
    
  • 相关阅读:
    主成分分析法
    K-means算法
    高斯混合模型
    data structure test
    八皇后问题求解
    商品管理系统课程设计
    哈佛商学院20部必看电影
    usaco1.1
    Visual Studio 2012 出现关于ActivityLog.xml错误的解决方案
    2012蓝桥杯决赛题
  • 原文地址:https://www.cnblogs.com/kikokiko/p/12254490.html
Copyright © 2011-2022 走看看