zoukankan      html  css  js  c++  java
  • ACM-ICPC 2018 徐州赛区网络预赛(8/11)

    ACM-ICPC 2018 徐州赛区网络预赛

    A.Hard to prepare
    枚举第一个选的,接下来的那个不能取前一个的取反
    (DP[i][0])表示选和第一个相同的
    (DP[i][1])表示选和第一个取反的
    (DP[i][2])表示选其他的
    状态转移方程直接看代码好了

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 1e6+7;
    typedef long long int LL;
    const LL MOD = 1e9+7;
    int n,k;
    LL qpow(LL a, LL b){
        LL ret = 1;
        while(b){
            if(b&1) ret = ret * a % MOD;
            b >>= 1;
            a = a * a % MOD;
        }
        return ret;
    }
    LL f[2][3];
    void solve(){
        cin >> n >> k;
        LL pk = qpow(2,k);
        LL pk_1 = (pk-1+MOD)%MOD;
        LL pk_2 = (pk-2+MOD)%MOD;
        LL pk_3 = (pk-3+MOD)%MOD;
        int ID = 0;
        f[0][0] = 1; f[0][1] = 0; f[0][2] = 0;
        //0 自身    1 自身取反     2.其他
        for(int i = 2; i <= n; i++){
            ID ^= 1;
            f[ID][0] = (f[ID^1][0]+f[ID^1][2]) % MOD;
            f[ID][1] = (f[ID^1][1]+f[ID^1][2]) % MOD;
            f[ID][2] = (f[ID^1][0]*pk_2%MOD + f[ID^1][1]*pk_2%MOD + f[ID^1][2]*pk_3%MOD) % MOD;
        }
        cout << pk * (f[ID][0] + f[ID][2]) % MOD << endl;
    }
    int main(){
        ____();
        int T;
        for(cin >> T; T; T--) solve();   
        return 0;
    }
    

    B.BE, GE or NE
    Game + DP || 记忆化搜索
    到每个人选的时候必然在三种选择中选择最合适自己的,记忆化到每个位置(i)当前值是(x)的情况下的解

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 1111;
    const int D = 100;
    const int INF = 0x3f3f3f3f;
    int n,f[MAXN][D<<2],m,l,r;
    tuple<int,int,int> ops[MAXN];
    int ending(int score){
        if(score>=r) return 1;
        if(score<=l) return -1;
        return 0;
    }
    int search(int pos, int v){
        if(f[pos][v+D]!=INF) return f[pos][v+D];
        if(pos==n+1) return f[pos][v+D] = ending(v);
        vector<int> opt;
        if(get<0>(ops[pos])) opt.emplace_back(search(pos+1,min(D,v+get<0>(ops[pos]))));
        if(get<1>(ops[pos])) opt.emplace_back(search(pos+1,max(-D,v-get<1>(ops[pos]))));
        if(get<2>(ops[pos])) opt.emplace_back(search(pos+1,-v));
        sort(opt.begin(),opt.end());
        if(pos&1) f[pos][v+D] = opt.back();
        else f[pos][v+D] = opt.front();
        return f[pos][v+D];
    }
    int main(){
        ____();
        cin >> n >> m >> r >> l;
        for(int i = 1; i <= n; i++) cin >> get<0>(ops[i]) >> get<1>(ops[i]) >> get<2>(ops[i]);
        memset(f,0x3f,sizeof(f));
        int ret = search(1,m);
        if(ret==-1) cout << "Bad Ending" << endl;
        else if(ret==0) cout << "Normal Ending" << endl;
        else if(ret==1) cout << "Good Ending" << endl;
        return 0;
    }
    

    C.Cacti Lottery

    D.Easy Math
    杜教筛

    [计算f(m,n) = sum_{i=1}^{m}mu(in) ]

    [f(m,n)=sum_{i=1}^{m}mu(in) ]

    [= sum_{i=1}^{m}mu(i)mu(n)[gcd(i,n)==1] ]

    [= sum_{i=1}^{m}mu(i)mu(n)sum_{d|gcd(i,n)}mu(d) ]

    [= mu(n)sum_{i=1}^{m}mu(i)sum_{d|gcd(i,n)}mu(d) ]

    [=mu(n)sum_{d|n}mu(d)sum_{i=1}^{lfloor frac{m}{d} floor}mu(id) ]

    [=mu(n)sum_{d|n}mu(d)f(lfloorfrac{m}{d} floor,d) ]

    递归计算即可
    边界条件为:
    (m==1)时 返回(mu(n))
    (m==0)时 返回(0)
    (n==1)时 杜教筛计算(sum_{i=1}^{m}mu(i))

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    typedef long long int LL;
    const int MAXN = 5e6+7;
    vector<LL> prime;
    bool npm[MAXN];
    LL mu[MAXN],mus[MAXN],w[1<<11];
    map<LL,LL> MU;
    vector<LL> fact;
    vector<int> subset[1<<11];
    void preprocess(){
        mu[1] = 1;
        for(LL i = 2; i < MAXN; i++){
            if(!npm[i]){
                prime.emplace_back(i);
                mu[i] = -1;
            }
            for(int j = 0; j < (int)prime.size(); j++){
                if(i*prime[j]>=MAXN) break;
                mu[i*prime[j]] = -mu[i];
                npm[i*prime[j]] = true;
                if(i%prime[j]==0){
                    mu[i*prime[j]] = 0;
                    break;
                }
            }
        }
        for(int i = 1; i < MAXN; i++) mus[i] = mus[i-1] + mu[i];
        for(int i = 0; i < (1<<11); i++){
    		for(int j = 0; j <= i; j++){
    			if((i&j)==j) subset[i].push_back(j);
    		}
    	}
        for(int msk = 0; msk < (1<<(int)fact.size()); msk++){
            w[msk] = 1;
            for(int i = 0; i < (int)fact.size(); i++){
                if(msk&(1<<i)) w[msk] *= fact[i];
            }
        }
    }
    LL calmus(LL x){
        if(x<MAXN) return mus[x];
        if(MU.count(x)) return MU[x];
        LL tot = 1;
        for(LL i = 2; i <= x; i++){
            LL j = x / (x / i);
            tot -= (j - i + 1) * calmus(x / i);
            i = j;
        }
        return MU[x] = tot;
    }
    bool init(LL n){
        for(LL i = 2; i * i <= n; i++){
            if(n%i==0){
                fact.emplace_back(i);
                n /= i;
                if(n%i==0) return false;
            }
        }
        if(n!=1) fact.emplace_back(n);
        return true;
    }
    LL solve(LL m, int MSK){
        if(!MSK) return calmus(m);
        if(m==0) return 0;
        if(m==1) return ((__builtin_popcount(MSK)&1)?-1:1);
        LL ret = 0;
        for(int msk : subset[MSK]){
            ret += ((__builtin_popcount(msk)&1)?-1:1) * solve(m/w[msk],msk);
        }
        return ret * ((__builtin_popcount(MSK)&1)?-1:1);
    }
    int main(){
        LL m, n;
        cin >> m >> n;
        if(!init(n)) cout << 0 << endl;
        else preprocess(), cout << solve(m,(1<<fact.size())-1) << endl;
        return 0;
    }
    

    E.End Fantasy VIX

    F.Features Track
    map搞一下就好了

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 1e5+7;
    map<pair<int,int>,int> msk[2];
    void solve(){
        int ret = 1, n;
        scanf("%d",&n);
        int ID = 0;
        msk[0].clear(); msk[1].clear();
        for(int i = 1; i <= n; i++){
            int k; scanf("%d",&k);
            ID ^= 1;
            msk[ID].clear();
            for(int j = 1; j <= k; j++){
                pair<int,int> p; scanf("%d %d",&p.first,&p.second);
                if(msk[ID^1].count(p)) msk[ID].insert(make_pair(p,msk[ID^1].at(p)+1));
                else msk[ID].insert(make_pair(p,1));
                ret = max(ret,msk[ID].at(p));
            }
        }
        printf("%d
    ",ret);
    }
    int main(){
        int T;
        for(scanf("%d",&T); T; T--) solve();
        return 0;
    }
    

    G.Trace
    线段树+离散化
    可以把(x)(y)两个维度分开来做
    以计算(x)轴方向总长度为例
    从最后一个(wave)开始向前遍历,找在他之后且(y)方向坐标位置大于当前(wave)(x)的最大值,贡献就是当前的(x),减去在他之后的最大的(x),可以通过离散化+线段树的方法来做

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 5e4+7;
    typedef long long int LL;
    int n;
    class SegmentTree{
    private:
        int l[MAXN<<2],r[MAXN<<2],maxx[MAXN<<2];
        #define ls(rt) rt << 1
        #define rs(rt) rt << 1 | 1
        #define pushup(rt) maxx[rt] = max(maxx[ls(rt)],maxx[rs(rt)])
    public:
        void build(int L, int R, int rt = 1){
            l[rt] = L; r[rt] = R;
            maxx[rt] = 0;
            if(L+1==R) return;
            int mid = (L+R) >> 1;
            build(L,mid,ls(rt)); build(mid,R,rs(rt));
        }
        void update(int pos, int x, int rt = 1){
            if(l[rt]+1==r[rt]){
                maxx[rt] = max(maxx[rt],x);
                return;
            }
            int mid = (l[rt] + r[rt]) >> 1;
            if(pos<mid) update(pos,x,ls(rt));
            else update(pos,x,rs(rt));
            pushup(rt);
        }
        int qmax(int L, int R, int rt = 1){
            if(l[rt]>=R or L>=r[rt]) return 0;
            if(L<=l[rt] and r[rt]<=R) return maxx[rt];
            return max(qmax(L,R,ls(rt)),qmax(L,R,rs(rt)));
        }
    }ST;
    void solve(vector<pair<int,int> > &rect, LL &ret){
        vector<int> vec;
        for(int i = 0; i < (int)rect.size(); i++) vec.emplace_back(rect[i].second);
        sort(vec.begin(),vec.end());
        vec.erase(unique(vec.begin(),vec.end()),vec.end());
        ST.build(1,vec.size()+1);
        for(int i = 0; i < (int)rect.size(); i++){
            int y = lower_bound(vec.begin(),vec.end(),rect[i].second) - vec.begin() + 1;
            ret += rect[i].first - ST.qmax(y,vec.size()+1);
            ST.update(y,rect[i].first);
        }
    }
    int main(){
        ____();
        cin >> n;
        vector<pair<int,int> > rect(n);
        for(int i = 0; i < n; i++) cin >> rect[i].first >> rect[i].second;
        reverse(rect.begin(),rect.end());
        LL ret = 0;
        solve(rect,ret);
        for(int i = 0; i < n; i++) swap(rect[i].first,rect[i].second);
        solve(rect,ret);
        cout << ret << endl;
        return 0;
    }
    

    H.Ryuji doesn't want to study
    线段树

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 1e5+7;
    typedef long long int LL;
    int n,m;
    class SegmentTree{
    private:
        int l[MAXN<<2], r[MAXN<<2];
        LL sum1[MAXN<<2],sum2[MAXN<<2];
        #define ls(rt) rt << 1
        #define rs(rt) rt << 1 | 1 
        void pushup(int rt){
            sum1[rt] = sum1[ls(rt)] + sum1[rs(rt)];
            sum2[rt] = sum2[ls(rt)] + sum2[rs(rt)];
        }
    public:
        void build(int L, int R, int rt = 1){
            l[rt] = L; r[rt] = R;
            if(L+1==R){
                cin >> sum1[rt];
                sum2[rt] = sum1[rt] * (n + 1ll - L);
                return;
            }
            int mid = (L+R) >> 1;
            build(L,mid,ls(rt)); build(mid,R,rs(rt));
            pushup(rt);
        }
        void update(int pos, int x, int rt = 1){
            if(l[rt] + 1 == r[rt]){
                sum1[rt] = x;
                sum2[rt] = sum1[rt] * (n + 1ll - l[rt]);
                return;
            }
            int mid = (l[rt] + r[rt]) >> 1;
            if(pos<mid) update(pos,x,ls(rt));
            else update(pos,x,rs(rt));
            pushup(rt);
        }
        pair<LL,LL> query(int L, int R, int rt = 1){
            if(l[rt]>=R or L>=r[rt]) return make_pair(0,0);
            if(L<=l[rt] and r[rt]<=R) return make_pair(sum1[rt],sum2[rt]);
            auto p1 = query(L,R,ls(rt));
            auto p2 = query(L,R,rs(rt));
            return make_pair(p1.first+p2.first,p1.second+p2.second);
        }
    }ST;
    //维护两个值 1.A[i], 2.A[i] * (n+1-i)                  区间和
    int main(){
        ____();
        cin >> n >> m;
        ST.build(1,n+1);
        while(m--){
            int op,a,b;
            cin >> op >> a >> b;
            if(op==1){
                auto p = ST.query(a,b+1);
                cout << p.second - p.first * (n - b) << endl;
            }
            else ST.update(a,b);
        }
        return 0;
    }
    

    I.Characters with Hash
    签到

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 1e6+7;
    int n;
    char s[MAXN],st[2];
    void solve(){
        cin >> n >> st >> s;
        for(int i = 0; i < n; i++){
            if(s[i]!=st[0]){
                if(abs(s[i]-st[0])>=10) cout << (n-i) * 2  << endl;
                else cout << (n-i) * 2 - 1 << endl;
                return;
            }
        }
        cout << 1 << endl;
    }
    int main(){
        ____();
        int T; for(cin >> T; T; T--) solve();
        return 0;
    }
    

    J.Maze Designer
    因为任意两个点只存在唯一路径,所以这是个树形结构,现在要求建的墙花费最小,那么就是要求不建的花费最大,所以就是要找出最大生成树,然后对于每次询问就是询问树上两点的距离

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 555;
    typedef long long int LL;
    int n,m,num,root[MAXN*MAXN],depth[MAXN*MAXN],par[MAXN*MAXN][20];;
    int ID(int x, int y){ return (x - 1) * m + y; }
    int findx(int x){ return root[x]==x ? root[x] : root[x] = findx(root[x]); }
    pair<LL,pair<int,int>> edge[MAXN*MAXN*2];
    vector<int> G[MAXN*MAXN];
    int LCA(int u, int v){
        if(depth[u]<depth[v]) swap(u,v);
        for(int i = 0; depth[u] - depth[v]; i++) if((depth[u]-depth[v])&(1<<i)) u = par[u][i];
        if(u==v) return u;
        for(int i = 19; i >= 0; i--) if(par[u][i]!=par[v][i]){
            u = par[u][i];
            v = par[v][i];
        }
        return par[u][0];
    }
    void dfs(int u, int f){
        depth[u] = depth[f] + 1;
        par[u][0] = f;
        for(int i = 1; par[u][i-1]; i++) par[u][i] = par[par[u][i-1]][i-1];
        for(int v : G[u]) if(v!=f) dfs(v,u);
    }
    int solve(int u, int v){
        int lca = LCA(u,v);
        return depth[u] + depth[v] - 2 * depth[lca];
    }
    int main(){
        scanf("%d %d",&n,&m);
        for(int i = 1; i <= n; i++) for(int j = 1; j <= m; j++){
            char ds[2]; LL cost;
            scanf("%s %lld",ds,&cost);
            if(ds[0]!='X') edge[++num] = make_pair(cost,make_pair(ID(i,j),ID(i+1,j)));
            scanf("%s %lld",ds,&cost);
            if(ds[0]!='X') edge[++num] = make_pair(cost,make_pair(ID(i,j),ID(i,j+1)));
        }
        for(int i = 1; i <= n * m; i++) root[i] = i;
        sort(edge+1,edge+1+num,greater<pair<LL,pair<int,int>>>());
        for(int i = 1; i <= num; i++){
            int u = edge[i].second.first, v = edge[i].second.second;
            int fu = findx(u), fv = findx(v);
            if(fu==fv) continue;
            root[fu] = fv;
            G[u].emplace_back(v); G[v].emplace_back(u);
        }
        int q; scanf("%d",&q);
        dfs(1,0);
        while(q--){
            int x1, y1, x2, y2;
            scanf("%d %d %d %d",&x1,&y1,&x2,&y2);
            printf("%d
    ",solve(ID(x1,y1),ID(x2,y2)));
        }
        return 0;
    }
    

    K.Morgana Net

  • 相关阅读:
    前端之css网页布局等相关内容-54
    前端之css属性设置等相关内容-53
    前端之css选择器等相关内容-52
    前端之HTML标签等相关内容-51
    前端之HTML基础等相关内容-50
    数据库之mysql索引增删改查等相关内容-48
    累了就拥抱下自己
    平静地生活
    良心远大于失败
    独处
  • 原文地址:https://www.cnblogs.com/kikokiko/p/12842938.html
Copyright © 2011-2022 走看看