题意:
给出(N)个数和(k),有(m)次询问,每次询问区间([L1,R1])和区间([L2,R2])中分别取一个数能相加得到(k)的方案数
题解:
可以考虑容斥把两个区间的问题转化成四个单区间的问题,对于原问题给的区间([L1,R1])和([L2,R2]),我们记(f(L,R))为区间([L,R])内能相加得到(k)的有多少组合,那么对于每次的询问,可以简化为:(f(L1,R1)+f(R1+1,L2-1)-f(L1,L2-1)-f(R1+1,R2))
对于这个(f(L,R)),可以使用莫队来解决
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 1e5+7;
typedef long long int LL;
int n,k,m,A[MAXN],q,tot,cnt[MAXN];
LL ret[MAXN],ans;
class Query{
public:
int op, id, l, r;
}Q[MAXN<<2];
void dec(int x){
if(k>x) ans -= cnt[k-x];
cnt[x]--;
}
void inc(int x){
if(k>x) ans += cnt[k-x];
cnt[x]++;
}
void solve(){
scanf("%d",&k);
for(int i = 1; i <= n; i++) scanf("%d",&A[i]);
scanf("%d",&q);
int tot = 0;
for(int i = 1; i <= q; i++){
int l1, r1, l2, r2;
scanf("%d %d %d %d",&l1,&r1,&l2,&r2);
tot++; Q[tot].id = i; Q[tot].l = l1; Q[tot].r = r2; Q[tot].op = 1;
tot++; Q[tot].id = i; Q[tot].l = r1 + 1; Q[tot].r = l2 - 1; Q[tot].op = 1;
tot++; Q[tot].id = i; Q[tot].l = l1; Q[tot].r = l2 - 1; Q[tot].op = -1;
tot++; Q[tot].id = i; Q[tot].l = r1 + 1; Q[tot].r = r2; Q[tot].op = -1;
}
int sqt = sqrt(n);
sort(Q+1,Q+1+tot,[&sqt](const Query &lhs, const Query &rhs){
return lhs.l / sqt == rhs.l / sqt ? lhs.r < rhs.r : lhs.l / sqt < rhs.l / sqt;
});
ans = 0;
memset(cnt,0,sizeof(cnt));
memset(ret,0,sizeof(ret));
int L = 1, R = 0;
for(int i = 1; i <= tot; i++){
while(L>Q[i].l) inc(A[--L]);
while(R<Q[i].r) inc(A[++R]);
while(L<Q[i].l) dec(A[L++]);
while(R>Q[i].r) dec(A[R--]);
ret[Q[i].id] += Q[i].op * ans;
}
for(int i = 1; i <= q; i++) printf("%I64d
",ret[i]);
}
int main(){
while(scanf("%d",&n)!=EOF) solve();
return 0;
}