zoukankan      html  css  js  c++  java
  • java.util.LinkedList源码分析

    一、LinkedList的继承关系

    LinkedList实现了Collection,List,Serializable,Deque等接口

    二、LinkedList的结构

    通过查看源码发现linkedlist有个静态的内部类Node,Node里面有prev和next成员,说明linkedlist是一个双向链表的结构。代码如下

    private static class Node<E> {
            E item;
            Node<E> next;
            Node<E> prev;
    
            Node(Node<E> prev, E element, Node<E> next) {
                this.item = element;
                this.next = next;
                this.prev = prev;
            }
        }

    因此linkedlist结构图如下

    这里写了一个MyLinkedList类似于LinkedList 的结构,MyLinkedList还有很多方法没有实现

    /**
     * 模仿java.util.LinkedList的MyLinkedList
     * @param <E>
     */
    public class MyLinkedList<E> {
        private int size;
        Node<E> first;//头结点
        Node<E> last; // 尾结点
        private static  class Node<E>{
            // 从这可以看出 java.util.LinkedList是双向链表
            private Node<E> prev;
            private Node<E> next;
            private E element;
    
            Node(Node<E> prev,E item,Node<E> next){
                this.prev = prev;
                this.next = next;
                element = item;
            }
        }
    }

     三、LinkedList的操作

    基本操作

    LinkedList是一个双向链表。因此可以方便的对元素进行插入删除操作

    插入元素,调用add方法

     public boolean add(E e) {
            linkLast(e);
            return true;
        }
    
    void linkLast(E e) {
            final Node<E> l = last;
            final Node<E> newNode = new Node<>(l, e, null);
            last = newNode;
            if (l == null)
                first = newNode;
            else
                l.next = newNode;
            size++;
            modCount++;
        }

     在插入元素时会往链表的尾部插入元素,过程如下:

    1、先用一个变量l指向尾结点,

    2、创建新结点

    3、尾结点指向新的结点

    4、判断原来的尾结点(变量l指向的结点)是否为空,

    5 、如果为空说明是个空链表,将头结点指向新的结点;

    6 、原来的尾结点不为空,将原来尾结点(l指向的结点)的prev指向新的结点

    链表不为空的情况对应如下图

    链表为空对应如下

    在指定位置前插入元素

      public void add(int index, E element) {
            checkPositionIndex(index);
    
            if (index == size)
                linkLast(element);
            else
                linkBefore(element, node(index));
        }
    void linkBefore(E e, Node<E> succ) {
            // assert succ != null;
            final Node<E> pred = succ.prev;
            final Node<E> newNode = new Node<>(pred, e, succ);
            succ.prev = newNode;
            if (pred == null)
                first = newNode;
            else
                pred.next = newNode;
            size++;
            modCount++;
        }

    从头部插入元素

    public void addFirst(E e) {
            linkFirst(e);
        }
    private void linkFirst(E e) {
            final Node<E> f = first;
            final Node<E> newNode = new Node<>(null, e, f);
            first = newNode;
            if (f == null)
                last = newNode;
            else
                f.prev = newNode;
            size++;
            modCount++;
        }

    从尾部插入元素

    public void addLast(E e) {
            linkLast(e);
        }

    获取元素

    由于linkedlist是一个链表,内部没有维护数组,因此获取元素的时候需要循环来获取,代码如下

    public E get(int index) {
            checkElementIndex(index);//比较index是否大于等于0并且小于size,否则抛出异常
            return node(index).item;
        }
    
    Node<E> node(int index) {
         
            // 判断要找的元素的位置是在左半部分还是右半部分
            if (index < (size >> 1)) {
                Node<E> x = first;
               //从左边开始找
                for (int i = 0; i < index; i++)
                    x = x.next;
                return x;
            } else {
               // 从右开始
                Node<E> x = last;
                for (int i = size - 1; i > index; i--)
                    x = x.prev;
                return x;
            }
        }
                                

    获取头结点

    public E getFirst() {
            final Node<E> f = first;
            if (f == null)
                throw new NoSuchElementException();
            return f.item;
        }

    获取尾结点

    public E getLast() {
            final Node<E> l = last;
            if (l == null)
                throw new NoSuchElementException();
            return l.item;
        }

    移除指定元素

    移除元素,也要遍历查找然后删除

     E unlink(Node<E> x) {
            // assert x != null;
            final E element = x.item;
            final Node<E> next = x.next;
            final Node<E> prev = x.prev;
    
            if (prev == null) {
                first = next;
            } else {
                prev.next = next;
                x.prev = null;
            }
    
            if (next == null) {
                last = prev;
            } else {
                next.prev = prev;
                x.next = null;
            }
    
            x.item = null;
            size--;
            modCount++;
            return element;
        }
    public boolean remove(Object o) {
            if (o == null) {
                for (Node<E> x = first; x != null; x = x.next) {
                    if (x.item == null) {
                        unlink(x);
                        return true;
                    }
                }
            } else {
                for (Node<E> x = first; x != null; x = x.next) {
                    if (o.equals(x.item)) {
                        unlink(x);
                        return true;
                    }
                }
            }
            return false;
        }

    根据位置移除元素

    public E remove(int index) {
            checkElementIndex(index);
            return unlink(node(index));
        }

    移除头元素

    public E removeFirst() {
            final Node<E> f = first;
            if (f == null)
                throw new NoSuchElementException();
            return unlinkFirst(f);
        }

    移除尾元素

    public E removeLast() {
            final Node<E> l = last;
            if (l == null)
                throw new NoSuchElementException();
            return unlinkLast(l);
        }

    清空链表

     public void clear() {
            // Clearing all of the links between nodes is "unnecessary", but:
            // - helps a generational GC if the discarded nodes inhabit
            //   more than one generation
            // - is sure to free memory even if there is a reachable Iterator
            for (Node<E> x = first; x != null; ) {
                Node<E> next = x.next;
                x.item = null;
                x.next = null;
                x.prev = null;
                x = next;
            }
            first = last = null;
            size = 0;
            modCount++;
        }

    检查元素是否存在链表中

    public boolean contains(Object o) {
            return indexOf(o) != -1;
        }
    public int indexOf(Object o) {
            int index = 0;
            if (o == null) {
                for (Node<E> x = first; x != null; x = x.next) {
                    if (x.item == null)
                        return index;
                    index++;
                }
            } else {
                for (Node<E> x = first; x != null; x = x.next) {
                    if (o.equals(x.item))
                        return index;
                    index++;
                }
            }
            return -1;
        }

    添加其他集合中的元素

    public boolean addAll(Collection<? extends E> c) {
            return addAll(size, c);
        }
    public boolean addAll(int index, Collection<? extends E> c) {
            checkPositionIndex(index);
    
            Object[] a = c.toArray();
            int numNew = a.length;
            if (numNew == 0)
                return false;
    
            Node<E> pred, succ;
            if (index == size) {
                succ = null;
                pred = last;
            } else {
                succ = node(index);
                pred = succ.prev;
            }
    
            for (Object o : a) {
                @SuppressWarnings("unchecked") E e = (E) o;
                Node<E> newNode = new Node<>(pred, e, null);
                if (pred == null)
                    first = newNode;
                else
                    pred.next = newNode;
                pred = newNode;
            }
    
            if (succ == null) {
                last = pred;
            } else {
                pred.next = succ;
                succ.prev = pred;
            }
    
            size += numNew;
            modCount++;
            return true;
        }

    改变指定位置的元素

    public E set(int index, E element) {
            checkElementIndex(index);
            Node<E> x = node(index);
            E oldVal = x.item;
            x.item = element;
            return oldVal;
        }

    迭代器操作

    LinkedList的iterator()方法内部调用了其listIterator()方法,所以可以只分析listIterator()方法。listIterator()提供了两个重载方法。iterator()方法和listIterator()方法的关系如下:

    public Iterator<E> iterator() {
            return listIterator();
        }
    
    public ListIterator<E> listIterator() {
            return listIterator(0);
        }
    
     public ListIterator<E> listIterator(int index) {
            checkPositionIndex(index);
            return new ListItr(index);
        }

    从上面可以看到三者的关系是iterator()——>listIterator(0)——>listIterator(int index)。最终都会调用listIterator(int index)方法,其中参数表示迭代器开始的位置。在ArrayList源码分析中提到过ListIterator是一个可以指定任意位置开始迭代,并且有两个遍历方法。下面直接看ListItr的实现:

    private class ListItr implements ListIterator<E> {
            private Node<E> lastReturned;
            private Node<E> next;
            private int nextIndex;
            private int expectedModCount = modCount;//保存当前modCount,确保fail-fast机制
    
            ListItr(int index) {
                // assert isPositionIndex(index);
                next = (index == size) ? null : node(index);//得到当前索引指向的next节点
                nextIndex = index;
            }
    
            public boolean hasNext() {
                return nextIndex < size;
            }
    
            //获取下一个节点
            public E next() {
                checkForComodification();
                if (!hasNext())
                    throw new NoSuchElementException();
    
                lastReturned = next;
                next = next.next;
                nextIndex++;
                return lastReturned.item;
            }
    
            public boolean hasPrevious() {
                return nextIndex > 0;
            }
    
            //获取前一个节点,将next节点向前移
            public E previous() {
                checkForComodification();
                if (!hasPrevious())
                    throw new NoSuchElementException();
    
                lastReturned = next = (next == null) ? last : next.prev;
                nextIndex--;
                return lastReturned.item;
            }
    
            public int nextIndex() {
                return nextIndex;
            }
    
            public int previousIndex() {
                return nextIndex - 1;
            }
    
            public void remove() {
                checkForComodification();
                if (lastReturned == null)
                    throw new IllegalStateException();
    
                Node<E> lastNext = lastReturned.next;
                unlink(lastReturned);
                if (next == lastReturned)
                    next = lastNext;
                else
                    nextIndex--;
                lastReturned = null;
                expectedModCount++;
            }
    
            public void set(E e) {
                if (lastReturned == null)
                    throw new IllegalStateException();
                checkForComodification();
                lastReturned.item = e;
            }
    
            public void add(E e) {
                checkForComodification();
                lastReturned = null;
                if (next == null)
                    linkLast(e);
                else
                    linkBefore(e, next);
                nextIndex++;
                expectedModCount++;
            }
    
            public void forEachRemaining(Consumer<? super E> action) {
                Objects.requireNonNull(action);
                while (modCount == expectedModCount && nextIndex < size) {
                    action.accept(next.item);
                    lastReturned = next;
                    next = next.next;
                    nextIndex++;
                }
                checkForComodification();
            }
    
            final void checkForComodification() {
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
            }
        }

    用linkedList实现一个栈的结构

    栈是先进后出的结构,而linkedlist中有往头结点插入元素,从头结点取出元素的方法,因此可以将linkedlist的头结点作为栈顶,每一次都往头部添加元素,取元素的时候往头部取,实现与先进先出,也可以把尾结点作为栈顶,每一次都往尾部添加,往尾部取数据也可以实现,下面的代码使用尾结点作为栈顶

    public class LinkStack<E> {
    
        private LinkedList<E> stack;
    
        public LinkStack(){
            stack = new LinkedList<E>();
    
        }
    
        //压入数据
        public void push(E e) {
            stack.add(e);
        }
    
        //弹出数据,在Stack为空时将抛出异常
        public E pop() {
            return stack.removeLast();
        }
    
        //检索栈顶数据,但是不删除
        public E peek() {
            return stack.getLast();
        }
    
        public static void main(String[] args){
            LinkStack<Integer> stack = new LinkStack<>();
            stack.push(1);
            stack.push(2);
            System.out.println(stack.pop());
        }
    }

    LinkedList是基于双端链表的List,其内部的实现源于对链表的操作,所以适用于频繁增加、删除的情况;该类不是线程安全的;另外,由于LinkedList实现了Queue接口,所以LinkedList不止有队列的接口,还有栈的接口,可以使用LinkedList作为队列和栈的实现。

     
  • 相关阅读:
    《新下级学》第七章第二节——冲突
    《新下级学》第七章序和第一节——微观互动
    《新下级学》第六章第七第八节(本章完)——下级软弱的根源等
    《新下级学》第六章第五第六节——下级的底线等
    《新下级学》第六章第三第四节——下级对平级的看法等
    《新下级学》第六章第二节——下级对自己的需求、能力和责任的看法
    《新下级学》第六章序、第一节——下级的思维特点及处境
    《新下级学》第四章、第五章——什么是“下级”
    《新下级学》第三章——新下级学的立场
    变电站GPS校时产品(GPS对时设备)在线监测技术
  • 原文地址:https://www.cnblogs.com/kin1492/p/9349765.html
Copyright © 2011-2022 走看看