Problem Description:
A number sequence is defined as follows:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3
1 2 1
0 0 0
Sample Output
2
5
解题思路:因为本题的n非常大,所以通过循环直接求解是不可行的,之后我可能会想到存在某种规律,刚开始以为是每6个就循环一次,很傻,其实是在最开始的时候f(1)和f(2)都为1,那么计算到f(n)时,如果f(n)和f(n-1)的值都为1,又会和最开始一样计算下去,一直循环,n-2个为一个周期。
代码:
#include<iostream> using namespace std; const int INF = 10000; int ans[INF]; int main() { int A, B, n; while(cin >> A >> B >> n) { if(!A && !B && !n) break; ans[1] = ans[2] = 1; ans[3] = (A + B) % 7; int t; for(int i = 4; i < INF; i++) { ans[i] = (A * ans[i-1] + B * ans[i-2]) % 7; if(ans[i-1] == 1 && ans[i] == 1) { t = i-2; break; } } int index = n%t ? n%t : t; cout << ans[index] << endl; } return 0; }