Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10 1 3 6 9 0 8 5 7 4 2
Sample Output
16
题目大意:给你一个序列,每次将这个序列的最后一个元素移到第一位,问这些过程中,所生成的每种序列,最小的逆序对数为多少,输出这个最小逆序对数。
解题思路:先用树状数组求出原始序列的逆序对数,然后开始把最后一位a[n]移到第一位,逆序对增加a[i]-1,逆序对减少n-a[i](这道题给出序列元素值的范围是0~n-1),然后每次移动更新ans就行。
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<algorithm>
using namespace std;
int n;
int a[500001];//初始数组
int c[500001];
int lowbit(int x)
{
return x&-x;
}
void add(int x)
{
while(x<=n)
{
c[x]+=1;
x+=lowbit(x);
}
}
int sum(int x)
{
int s=0;
while(x>0)
{
s+=c[x];
x-=lowbit(x);
}
return s;
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
int ans=0;
memset(c,0,sizeof(c));
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i] );
a[i]+=1; //树状数组不能出现0 否则在上面void add()中x+=lowbit(x)一直是0 会陷入死循环
add(a[i]);
ans+=(i-sum(a[i]));//i为当前插入的个数 sum(a[i])为当前比它小的个数
}
int minn=50000000;
for(int i=n;i>0;i--)
{
minn=min(minn,ans+a[i]-1-(n-a[i] ));//把一个数从末尾移除 则前面比它大的元素(一共有n-a[i]个)的逆序列数都减一 把该数放到首位后它本来是没有逆序列 现在比他小的(一共a[i]-1个)都能和他构成一个逆序列
ans=ans+a[i]-1-(n-a[i]);
}
printf("%d
",minn);
}
return 0;
}