zoukankan      html  css  js  c++  java
  • HDU2602:Bone Collector

    Problem Description
    Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave …
    The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?

     

    Input
    The first line contain a integer T , the number of cases.
    Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
     

    Output
    One integer per line representing the maximum of the total value (this number will be less than 231).
     

    Sample Input
    1 5 10 1 2 3 4 5 5 4 3 2 1
     

    Sample Output
    14
    用子问题定义状态:即dp[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是: dp[i][v]=max{dp[i-1][v],dp[i-1][v-vi[i]]+val[i]} 这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下: “将前i件物品放入容量为v的背包中”这个子问题 若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。 如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为dp[i-1][v]; 如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-vi[i]的背包中”,此时能获得的最大价值就是dp[i-1][v-vi[i]]再加上通过放入第i件物品获得的价值val[i]。
    #include<cstdio>
    #include<cstring>
    #include<algorithm> 
    using namespace std;
    int dp[1000][1001];
    int  vi[10001];
    int   val[10001];
    int main()
    {
    	int t; 
    	scanf("%d",&t);
    	while(t--)
    	{	
    		int n,v;
    		scanf("%d%d",&n,&v);	
        	for(int i=1;i<=n;i++)
    		{
    		  scanf("%d",&val[i]);	
    		}	
        	for(int i=1;i<=n;i++)
    		{
    			scanf("%d",&vi[i]);
    		}
    		dp[0][0]=0;
    		for(int i=1;i<=n;i++)
    		{
    				for(int j=0;j<=v;j++)
    	    	{
    	    		if(vi[i]<=j)
    			    dp[i][j]=max(dp[i-1][j],dp[i-1][j-vi[i]]+val[i]);//放入第i个物品 
    			    else
    			    dp[i][j]=dp[i-1][j];
    		    }
    		}
    		printf("%d
    ",dp[n][v]);
    	}
    	return 0;
    }
    下面是对上面的优化
    我们可以用一维数组来代替二维数组
    dp[i][v]是由dp[i-1][v]和dp[i-1][v-vi[i]]两个子问题递推而来,为了保证在推dp[i][v]时(也即在第i次主循环中推dp[v]时)能够得到dp[i-1][v]和dp[i-1][v-vi[i]]的值 可以在每次i主循环中以v——>0求出dp[v]
    状态转移方程:dp[v]=max(dp[v],dp[v-vi[i]+val[i]);
    注意:这种解法只能由V--0,不能反过来,如果反过来就会造成物品重复放置!

    #include<cstdio>
    #include<cstring>
    #include<algorithm> 
    using namespace std;
    int dp[1000];
    int  vi[10001];
    int   val[10001];
    int main()
    {
    	int t; 
    	scanf("%d",&t);
    	while(t--)
    	{	
    	   memset(dp,0,sizeof(dp));
    		int n,v;
    		scanf("%d%d",&n,&v);	
        	for(int i=1;i<=n;i++)
    		{
    		  scanf("%d",&val[i]);	
    		}	
        	for(int i=1;i<=n;i++)
    		{
    			scanf("%d",&vi[i]);
    		}
    		dp[0]=0;
    		for(int i=1;i<=n;i++)
    		{
    				for(int j=v;j>=vi[i];j--)
    	    	{
    	    	
    			    dp[j]=max(dp[j],dp[j-vi[i]]+val[i]);
    			  
    		    }
    		}
    		printf("%d
    ",dp[v]);
    	}
    	return 0;
    }


  • 相关阅读:
    lintcode:数字三角形
    lintcode:Search Insert Position 搜索插入位置
    lintcode:搜索二维矩阵II
    lintcode :搜索二维矩阵
    Linux du命令详解
    Linux df命令详解
    Linux date命令详解
    Linux tcpdump命令详解
    Linux挂载共享命令
    Linux scp命令详解
  • 原文地址:https://www.cnblogs.com/kingjordan/p/12027056.html
Copyright © 2011-2022 走看看