zoukankan      html  css  js  c++  java
  • HDU1513:Palindrome

    Description

    A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted into the string in order to obtain a palindrome. 

    As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome.

    Input

    Your program is to read from standard input. The first line contains one integer: the length of the input string N, 3 <= N <= 5000. The second line contains one string with length N. The string is formed from uppercase letters from 'A' to 'Z', lowercase letters from 'a' to 'z' and digits from '0' to '9'. Uppercase and lowercase letters are to be considered distinct. 

    Output

    Your program is to write to standard output. The first line contains one integer, which is the desired minimal number. 

    Sample Input

    5
    Ab3bd

    Sample Output

    2

    给出一个字符串 问你添加几个字符可以使得倒读正读一样

    求出正反序列的最大公共子序列长度len 再用 n-len

    这里需要使用滚动数组否则会超时

    #include<cstdio>    
    #include<cstring>  
    #include<algorithm>  
    using namespace std;   
    char a[5010],b[5010];    
    int dp[2][5010];      
    int main()    
    {    
        int len;    
        while(scanf("%d",&len)!=EOF)    
        {  
    	      scanf("%s",&a);
             for(int i=0;i<len;i++) 
                {
                	b[len-1-i]=a[i];
    			}
              b[len]='';
            memset(dp,0,sizeof(dp));    
            for(int i=1;i<=len;++i)    
            {    
                for(int j=1;j<=len;++j)    
                {    
                    if(a[i-1]==b[j-1])    
                        dp[i%2][j]=dp[(i-1)%2][j-1]+1;    
                    else    
                        dp[i%2][j]=max(dp[(i-1)%2][j],dp[i%2][j-1]);    
                }    
            }    
            printf("%d
    ",len-dp[len%2][len]);    
        }    
        return 0;    
    }  


  • 相关阅读:
    一般图最大匹配-带花树算法学习笔记
    网络流建图/模型总结
    博弈论学习笔记
    2019牛客暑期多校训练营(第二场)题解
    AtCoder Beginner Contest 131 F
    AtCoder Beginner Contest 130 F Minimum Bounding Box 三分法求极值(WA)
    最长上升子序列(LIS)长度及其数量
    Codeforces 1195E. OpenStreetMap (单调队列)
    Educational Codeforces Round 65 E,F
    最小生成树
  • 原文地址:https://www.cnblogs.com/kingjordan/p/12027060.html
Copyright © 2011-2022 走看看