zoukankan      html  css  js  c++  java
  • Farthest Nodes in a Tree

    Description

    Given a tree (a connected graph with no cycles), you have to find the farthest nodes in the tree. The edges of the tree are weighted and undirected. That means you have to find two nodes in the tree whose distance is maximum amongst all nodes.

    Input

    Input starts with an integer T (≤ 10), denoting the number of test cases.

    Each case starts with an integer n (2 ≤ n ≤ 30000) denoting the total number of nodes in the tree. The nodes are numbered from 0 to n-1. Each of the next n-1 lines will contain three integers u v w (0 ≤ u, v < n, u ≠ v, 1 ≤ w ≤ 10000) denoting that node u and v are connected by an edge whose weight is w. You can assume that the input will form a valid tree.

    Output

    For each case, print the case number and the maximum distance.

    Sample Input

    2

    4

    0 1 20

    1 2 30

    2 3 50

    5

    0 2 20

    2 1 10

    0 3 29

    0 4 50

    Sample Output

    Case 1: 100

    Case 2: 80

    直接套模板   

    #include<cstdio>
    #include<queue>
    #include<cstring>
    using namespace std;
    struct node 
    {
    	int from,to,val,next;
    };
    node dian[1000001];
    int cut;
    int head[100001];
    void chushihua()
    {
    	cut=0;
    	memset(head,-1,sizeof(head));
    }
    
    void  Edge(int u,int v,int w)
    {
    	dian[cut].from =u;
    	dian[cut].to =v;
    	dian[cut].val =w;
    	dian[cut].next =head[u];
    	head[u]=cut++;
    }
    int jilu;
    int vis[100001];
    int dist[100001];
    int ans;
    int n;
    void bfs(int s)
    {
    memset(vis,0,sizeof(vis));
    memset(dist,0,sizeof(dist));
    	ans=0;
    	queue<int>q;
    	q.push(s);vis[s]=1;dist[s]=0;
    	while(!q.empty() )
    	{
    		int u=q.front() ;
    		q.pop() ;
    		for(int i=head[u];i!=-1;i=dian[i].next )
    		{
    			int v=dian[i].to ;
    			if(!vis[v])
    			{
    				if(dist[v]<dist[u]+dian[i].val )
    				dist[v]=dist[u]+dian[i].val ;
    					vis[v]=1;
    		            q.push(v); 	
    			}
    		}
         }
    	for(int i=0;i<n;i++)
    	{
    			if(ans<dist[i])
    		     {
    			    ans=dist[i];
    			    jilu=i;
    	          }
    	}
    		
    }
    int main()
    {
    	int t,k=0;
    	scanf("%d",&t);
    	while(t--)
    	{
    		k++;
    		chushihua();
    		int a,b,c;
    		scanf("%d",&n);
    		for(int i=1;i<n;i++)
    		{
    			scanf("%d%d%d",&a,&b,&c);
    			Edge(a,b,c);
    			Edge(b,a,c);
    		}
    		bfs(0);bfs(jilu);
    		printf("Case %d: %d
    ",k,ans);
    	}
    	return 0;
    }


  • 相关阅读:
    Sampling Distribution of the Sample Mean|Central Limit Theorem
    OS L2-3: Process Creation and Operations
    c++函数重载、内联函数、类、友元
    命名空间及异常处理
    C++继承与多态,代码复用之泛型和模板
    ORB_GMS图像对齐
    ORB对齐
    [转]OpenCV中ORB特征点检测和匹配简单用法
    [转]OpenCV学习笔记】之鼠标的调用
    [转]OpenCV—Mat类
  • 原文地址:https://www.cnblogs.com/kingjordan/p/12027097.html
Copyright © 2011-2022 走看看