zoukankan      html  css  js  c++  java
  • Roads in the North

    Description

    Building and maintaining roads among communities in the far North is an expensive business. With this in mind, the roads are build such that there is only one route from a village to a village that does not pass through some other village twice. 
    Given is an area in the far North comprising a number of villages and roads among them such that any village can be reached by road from any other village. Your job is to find the road distance between the two most remote villages in the area. 

    The area has up to 10,000 villages connected by road segments. The villages are numbered from 1. 

    Input

    Input to the problem is a sequence of lines, each containing three positive integers: the number of a village, the number of a different village, and the length of the road segment connecting the villages in kilometers. All road segments are two-way.

    Output

    You are to output a single integer: the road distance between the two most remote villages in the area.

    Sample Input

    5 1 6
    1 4 5
    6 3 9
    2 6 8
    6 1 7
    

    Sample Output

    22

    又是一道套模板题

    #include<cstdio>
    #include<queue>
    #include<cstring>
    using namespace std;
    struct node 
    {
    	int from,to,val,next;
    };
    node dian[1000001];
    int cut;
    int head[100001];
    void chushihua()
    {
    	cut=0;
    	memset(head,-1,sizeof(head));
    }
    
    void  Edge(int u,int v,int w)
    {
    	dian[cut].from =u;
    	dian[cut].to =v;
    	dian[cut].val =w;
    	dian[cut].next =head[u];
    	head[u]=cut++;
    }
    int jilu;
    int vis[100001];
    int dist[100001];
    int ans;
    void bfs(int s)
    {
    memset(vis,0,sizeof(vis));
    memset(dist,0,sizeof(dist));
    	ans=0;
    	queue<int>q;
    	q.push(s);vis[s]=1;dist[s]=0;
    	while(!q.empty() )
    	{
    		int u=q.front() ;
    		q.pop() ;
    		for(int i=head[u];i!=-1;i=dian[i].next )
    		{
    			int v=dian[i].to ;
    			if(!vis[v])
    			{
    				if(dist[v]<dist[u]+dian[i].val )
    				dist[v]=dist[u]+dian[i].val ;
    					vis[v]=1;
    		            q.push(v); 	
    					
    					if(ans<dist[v])
    		           {
    			        ans=dist[v];
    			        jilu=v;
    	               }	
    			}
    		}
         }		
    }
    int main()
    {
         	int a,b,c;	
    		 chushihua();
    	while(scanf("%d%d%d",&a,&b,&c)!=EOF)
    	{
    			Edge(a,b,c);
    			Edge(b,a,c);
    
    	}
         	bfs(1);bfs(jilu);
    		printf("%d
    ",ans);
    	return 0;
    }


  • 相关阅读:
    EIGRP-16-其他和高级的EIGRP特性-2-非等价负载分担
    EIGRP-15-其他和高级的EIGRP特性-1-路由器ID
    EIGRP-14-EIGRP的命名模式
    EIGRP-13-弥散更新算法-停滞在活动状态
    EIGRP-12-弥散更新算法-DUAL的FSM(*没写完)
    EIGRP-11-弥散更新算法-EIGRP中的本地计算和弥散计算
    EIGRP-10-弥散更新算法-计算距离,报告距离,可行距离和可行性条件
    EIGRP-9-弥散更新算法-拓扑表
    EIGRP-8-路由器的邻接关系
    EIGRP-7-可靠传输协议
  • 原文地址:https://www.cnblogs.com/kingjordan/p/12027100.html
Copyright © 2011-2022 走看看