ReentrantLock - 独占锁
特性:①独占锁 ②可重入 ③公平/非公平 ④可超时中断
// ReentrantLock
public class ReentrantLockTest {
private static Lock lock = new ReentrantLock();
private static int count = 0;
public static void main(String[] args) throws InterruptedException {
for(int i = 0;i < 1000; i++){
new Thread(ReentrantLockTest::incre).start();
}
Thread.sleep(1000);
System.out.println(count);
}
public static void incre() {
lock.lock(); // 抢占锁
try {
count++;
}catch (Exception e){
e.printStackTrace();
}finally {
lock.unlock(); // 释放锁
}
}
}
ReentrantReadWriteLock - 读写锁
ReentrantReadWriteLock使用同一个Sync队列,重写了共享资源/互斥资源的获取与释放逻辑,通过state的高16位存储共享状态,state的低16位存储互斥状态。
API:①readLock() - 获取读锁 ②writeLock() - 获取写锁 =③lock.lock()/unlock()
// 读写锁,允许读读共享,读写互斥,写写互斥
public class ReentrantReadWriteLockTest {
private static ReadWriteLock readWriteLock = new ReentrantReadWriteLock(true);
private static Lock readLock = readWriteLock.readLock();
private static Lock writeLock = readWriteLock.writeLock();
static String message = null;
public static void main(String[] args) {
new Thread(ReentrantReadWriteLockTest::producer).start();
new Thread(ReentrantReadWriteLockTest::consumer).start();
}
public static void producer(){
Random random = new Random(47);
while (true) {
writeLock.lock();
try {
message = "" + random.nextInt();
System.out.println("write " + message);
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
writeLock.unlock();
}
}
}
public static void consumer(){
while (true) {
readLock.lock();
try {
System.out.println("read " + message);
} finally {
readLock.unlock();
}
}
}
}
Condition - 条件等待
Condition是JUC提供的,功能等同于wait/notify功能的接口,具体实现为AbstractQueuedSynchronizer的内部类ConditionObject(只能在AQS对象实例内部创建),基于一个单向的Fifo队列实现等待与唤醒
API:①await() ②signal() ③signalAll()
// 阻塞队列的put()/take()方法即为通过两个contidion实现等待
public class ConditionTest{
public static void main(String[] args) {
ReentrantLock lock = new ReentrantLock();
Condition empty = lock.newCondition();
Condition full = lock.newCondition();
Queue<Integer> queue = new LinkedList<Integer>(); // 线程不安全的队列
new Thread(new Producer(queue,4,lock,empty,full)).start();
new Thread(new Consumer(queue,lock,empty,full)).start();
}
}
// Producer
public class Producer implements Runnable{
private Queue<Integer> msg;
private int maxSize;
private Lock lock;
private Condition empty;
private Condition full;
public Producer(Queue<Integer> msg, int maxSize, Lock lock, Condition empty, Condition full) {
this.msg = msg;
this.maxSize = maxSize;
this.lock = lock;
this.empty = empty;
this.full = full;
}
@Override
public void run() {
for(int i = 0;;i++){
lock.lock();
try {
while (msg.size() == maxSize){
System.out.println("消息队列已满 - waiting");
full.await(); // 队列已满,加入full等待队列
}
System.out.print("生产消息:"+ msg.add(i));
empty.signal(); // 生成了消息,唤醒empty等待队列
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
System.out.println();
}
}
}
// Consumer
public class Consumer implements Runnable{
private Queue<Integer> msg;
private Lock lock;
private Condition empty;
private Condition full;
public Consumer(Queue<Integer> msg, Lock lock, Condition empty, Condition full) {
this.msg = msg;
this.lock = lock;
this.empty = empty;
this.full = full;
}
@Override
public void run() {
for(int i = 0;;i++){
lock.lock();
try {
while (msg.isEmpty()){
System.out.println("消息队列已空 - waiting");
empty.await();
}
System.out.print("消费消息:" + msg.remove());
full.signal();
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
System.out.println();
}
}
}
CountDownLatch 计数器
线程调用countDownLatch.await()方法时将会被挂起,直到计数器计数值减为0时,唤醒所有await()线程 - 底层为共享模式的实现
API:①await() ②countDown() - 计数值减一
// 用法一:初始计数值设为1,所有await线程将在同一时间被唤醒(多个线程await(),一个线程countDown())
public static void demo1(){
countDownLatch = new CountDownLatch(1);
new Thread(CountDownLatchTest::execute1).start();
new Thread(CountDownLatchTest::execute1).start();
new Thread(CountDownLatchTest::execute1).start();
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
countDownLatch.countDown(); // 初始计数值计为1,countDown()方法唤醒所有await()线程,使所有线程同步开始
}
public static void execute1(){
System.out.println(Thread.currentThread().getName() + " -> begin");
try {
countDownLatch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " -> end");
}
// 用法二:初始计数值设为任意,只有任意个线程调用countDown()方法后,方才唤醒awati线程(一个线程await(),等待多个线程countDown())
public static void demo2(){
countDownLatch = new CountDownLatch(3);
new Thread(CountDownLatchTest::execute2).start();
new Thread(CountDownLatchTest::execute2).start();
new Thread(CountDownLatchTest::execute2).start();
System.out.println(Thread.currentThread().getName() + " -> main.await");
try {
countDownLatch.await(); // await()线程等待计数值个线程执行countDown()后才能被唤醒
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " -> main.signal");
}
public static void execute2(){
System.out.println(Thread.currentThread().getName() + " -> 已执行");
countDownLatch.countDown();
}
Semaphore 信号灯(令牌桶)
只有获得令牌的线程可以继续执行,用以控制同时访问的线程个数。
API:①acquire() - 获取令牌 ②release() - 释放令牌
// 只有获得令牌的线程可以继续执行,用以控制同时访问的线程个数。
public class SemaphoreTest {
private static Semaphore semaphore = new Semaphore(5);
public static void main(String[] args) {
new Thread(SemaphoreTest::execute).start();
new Thread(SemaphoreTest::execute).start();
new Thread(SemaphoreTest::execute).start();
new Thread(SemaphoreTest::execute).start();
new Thread(SemaphoreTest::execute).start();
}
public static void execute(){
while(true) {
try {
semaphore.acquire();
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
semaphore.release();
System.out.println(Thread.currentThread().getName() + " -> 获得了令牌");
}
}
}
CyclicBarrier - 循环屏障
让一组线程到达一个屏障(也可以叫同步点)时被阻塞,直到最后一个线程到达屏障时,所有被屏障拦截的线程才会继续工作。
(由最后一个进入线程执行barrierAction,并唤醒对应数量的await状态线程,然后计数值会reset,计入下一次循环)
API: await() - CyclicBarrier是当最后一个线程到达屏障时,自动唤醒。
// 屏障,当进入await状态的线程数达到parties时,会由最后一个进入线程执行barrierAction,然后释放对应数量的await状态线程(然后发送reset)
public class CyclicBarrierTest {
private static CyclicBarrier cyclicBarrier = new CyclicBarrier(4,new Thread(()-> System.out.println(Thread.currentThread().getName())));
public static void main(String[] args) {
new Thread(CyclicBarrierTest::execute).start();
new Thread(CyclicBarrierTest::execute).start();
new Thread(CyclicBarrierTest::execute).start();
new Thread(CyclicBarrierTest::execute).start(); // 以上4个线程将会被唤醒
new Thread(CyclicBarrierTest::execute).start(); // 计数值被reset后,由于后来线程数无法达到计数值,因此该线程将被永久阻塞
}
public static void execute() {
System.out.println(Thread.currentThread().getName() + " -> begin");
try {
cyclicBarrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " -> end");
}
}
Exchanger - 值交换器
用以实现两个线程之间消息的交换,先到达exchange()的线程将被阻塞,等待下一个线程exchange()唤醒
// 交换器,用于两个线程之间交换数据(先到达的线程将会被阻塞)
public class ExchangerTesst {
private static Exchanger<String> exchanger = new Exchanger<>();
public static void main(String[] args) {
new Thread(ExchangerTesst::execute).start();
new Thread(ExchangerTesst::execute).start();
}
private static void execute(){
try {
String msg = Thread.currentThread().getName();
Thread.sleep(1000);
System.out.println(Thread.currentThread().getName() + " -> " + msg);
msg = exchanger.exchange(Thread.currentThread().getName());
System.out.println(Thread.currentThread().getName() + " -> " + msg);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
// Thread-0 -> Thread-0
// Thread-1 -> Thread-1
// Thread-1 -> Thread-0 -- 发生了值的交换
// Thread-0 -> Thread-1