这道题考察了三个数论的公式定理:
整数唯一分解定理:a=(p1^k1)*(p2^k2)**...*(pn^kn) (p(i)为质数)
因数和公式 (已知a=(p1^k1)*(p2^k2)**...*(pn^kn)),则A的所有因子之和为:sum = (1+p1+p1^2+...p1^k1)*(1+p2+p2^2+...p2^k2)*...*(1+pn+pn^2+...pn^kn)
同余模公式:
(a+b)%m=(a%m+b%m)%m
(a*b)%m=(a%m*b%m)%m
代码如下:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <vector> 5 #include <algorithm> 6 #include <cmath> 7 8 using namespace std; 9 10 typedef long long LL; 11 const int mod = 9901; 12 vector<LL> p; 13 vector<LL> k; 14 LL n, a, b; 15 16 //快速幂 17 LL quickmul(LL x, LL n) { 18 LL ans = 1; 19 LL t = x; 20 while(n) { 21 if(n & 1) { 22 ans = (ans * t) % mod; 23 } 24 t = t * t % mod; 25 n >>= 1; 26 } 27 return ans; 28 } 29 30 //分解质因数 31 void factor(LL n) { 32 p.clear(); 33 k.clear(); 34 int nn = (int)sqrt(n*1.0); 35 for(int i = 2; i <= nn; i+=2) { 36 if(n % i == 0) { //分解n,使n变为p1^k1*p2^k2+...pn^kn 37 p.push_back(i); 38 k.push_back(0); 39 while(n % i == 0) { 40 k.back()++; 41 n = n / i; 42 } 43 } 44 if(i == 2) { 45 i--; 46 } 47 if(n == 1){ 48 break; 49 } 50 } 51 if(n != 1) { //特判质数 52 p.push_back(n); 53 k.push_back(1); 54 } 55 } 56 57 //同余模公式 58 //(a+b)%m=(a%m+b%m)%m 59 //(a*b)%m=(a%m*b%m)%m 60 //二分求1+pi+pi^2+...+pi^n的和 61 LL modu(LL x,LL y) { 62 if(y == 0) { 63 return 1; 64 } 65 if(y % 2 == 0) { 66 return (((modu(x,y/2-1)%mod)*((1+quickmul(x,y/2+1))%mod))%mod+quickmul(x,y/2)%mod)%mod; 67 } 68 if(y % 2 != 0) { 69 return (modu(x,y/2)%mod)*((1+quickmul(x,y/2+1))%mod)%mod; 70 } 71 } 72 73 void solve() { 74 factor(a); //分解a,使a = p1^k1*p2^k2+...pn^kn 75 for(int i = 0; i < k.size(); i++) { 76 k[i] = k[i] * b; //所以a^b = p1^(k1*b)*p2^(k2*b)...pn^(kn*b) 77 } 78 LL sum = 1; 79 for(int i = 0; i < k.size(); i++) { 80 sum = sum * modu(p[i], k[i]) % mod; 81 } 82 printf("%I64d ", sum); 83 } 84 85 int main() { 86 while(~scanf("%d %d", &a, &b)) { 87 solve(); 88 } 89 return 0; 90 }