zoukankan      html  css  js  c++  java
  • [POJ1845]Sumdiv

    这道题考察了三个数论的公式定理:

    整数唯一分解定理:a=(p1^k1)*(p2^k2)**...*(pn^kn) (p(i)为质数)

    因数和公式 (已知a=(p1^k1)*(p2^k2)**...*(pn^kn)),则A的所有因子之和为:sum = (1+p1+p1^2+...p1^k1)*(1+p2+p2^2+...p2^k2)*...*(1+pn+pn^2+...pn^kn)

    同余模公式:

    (a+b)%m=(a%m+b%m)%m

    (a*b)%m=(a%m*b%m)%m

    代码如下:

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <vector>
     5 #include <algorithm>
     6 #include <cmath>
     7 
     8 using namespace std;
     9 
    10 typedef long long LL;
    11 const int mod = 9901;
    12 vector<LL> p;
    13 vector<LL> k;
    14 LL n, a, b;
    15 
    16 //快速幂
    17 LL quickmul(LL x, LL n) {
    18     LL ans = 1;
    19     LL t = x;
    20     while(n) {
    21         if(n & 1) {
    22             ans = (ans * t) % mod;
    23         }
    24         t = t * t % mod;
    25         n >>= 1;
    26     }
    27     return ans;
    28 }
    29 
    30 //分解质因数
    31 void factor(LL n) {
    32     p.clear();
    33     k.clear();
    34     int nn = (int)sqrt(n*1.0);
    35     for(int i = 2; i <= nn; i+=2) {
    36         if(n % i == 0) {    //分解n,使n变为p1^k1*p2^k2+...pn^kn
    37             p.push_back(i);
    38             k.push_back(0);
    39             while(n % i == 0) {
    40                 k.back()++;
    41                 n = n / i;
    42             }
    43         }
    44         if(i == 2) {
    45             i--;
    46         }
    47         if(n == 1){
    48             break;
    49         }
    50     }
    51     if(n != 1) {    //特判质数
    52         p.push_back(n);
    53         k.push_back(1);
    54     }
    55 }
    56 
    57 //同余模公式
    58 //(a+b)%m=(a%m+b%m)%m
    59 //(a*b)%m=(a%m*b%m)%m
    60 //二分求1+pi+pi^2+...+pi^n的和
    61 LL modu(LL x,LL y) {  
    62     if(y == 0) {
    63         return 1;  
    64     }
    65     if(y % 2 == 0) {
    66         return (((modu(x,y/2-1)%mod)*((1+quickmul(x,y/2+1))%mod))%mod+quickmul(x,y/2)%mod)%mod;  
    67     }
    68     if(y % 2 != 0) {
    69         return (modu(x,y/2)%mod)*((1+quickmul(x,y/2+1))%mod)%mod;  
    70     }
    71 }
    72 
    73 void solve() {
    74     factor(a);  //分解a,使a = p1^k1*p2^k2+...pn^kn
    75     for(int i = 0; i < k.size(); i++) {
    76         k[i] = k[i] * b; //所以a^b = p1^(k1*b)*p2^(k2*b)...pn^(kn*b)
    77     }
    78     LL sum = 1;
    79     for(int i = 0; i < k.size(); i++) {
    80         sum = sum * modu(p[i], k[i]) % mod;
    81     }
    82     printf("%I64d
    ", sum);
    83 }
    84 
    85 int main() {
    86     while(~scanf("%d %d", &a, &b)) {
    87         solve();
    88     }
    89     return 0;
    90 }
  • 相关阅读:
    AntDesign(React)学习-15 组件定义、connect、interface
    js函数中不带e的阻止冒泡方法
    ext.net 修改store后强制更新
    给非input元素增加placeholder特性
    AntDesign(React)学习-14 使用UMI提供的antd模板
    认知:关于Android 调试的坑
    css 定位(fixed > absolute > relative)与层级zIndex 的权限认知
    echarts 通过dom获取echarts实例,批量监听reset
    阿里云 ssh 登陆请使用(公)ip
    Chrome 调试技巧: 调整网速
  • 原文地址:https://www.cnblogs.com/kirai/p/4737874.html
Copyright © 2011-2022 走看看