zoukankan      html  css  js  c++  java
  • [HDOJ5667]Sequence(矩阵快速幂,费马小定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5667

    费马小定理:

    假如p是质数,且gcd(a,p)=1,那么 a^(p-1)≡1(mod p)。

    即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。

    注意这里使用快速幂的时候要根据费马小定理对p-1取模。还有注意a%p=0的情况。

    递推式:f(n)=f(n-1)*c+f(n-2)+1 非齐次。

    构造矩阵:

    |c 1 1|
    |1 0 0|
    |0 0 1|

    初始的矩阵:

    |1|
    |0|
    |1|
      1 #include <algorithm>
      2 #include <iostream>
      3 #include <iomanip>
      4 #include <cstring>
      5 #include <climits>
      6 #include <complex>
      7 #include <fstream>
      8 #include <cassert>
      9 #include <cstdio>
     10 #include <bitset>
     11 #include <vector>
     12 #include <deque>
     13 #include <queue>
     14 #include <stack>
     15 #include <ctime>
     16 #include <set>
     17 #include <map>
     18 #include <cmath>
     19 
     20 using namespace std;
     21 
     22 typedef long long ll;
     23 const ll maxn = 10;
     24 ll n, a, b, c, p;
     25 
     26 typedef struct Matrix {
     27     ll m[maxn][maxn];
     28     ll r;
     29     ll c;
     30     Matrix(){
     31         r = c = 0;
     32         memset(m, 0, sizeof(m));
     33     } 
     34 } Matrix;
     35 
     36 Matrix mul(Matrix m1, Matrix m2, ll mod) {
     37     Matrix ans = Matrix();
     38     ans.r = m1.r;
     39     ans.c = m2.c;
     40     for(ll i = 1; i <= m1.r; i++) {
     41         for(ll j = 1; j <= m2.r; j++) {
     42                for(ll k = 1; k <= m2.c; k++) {
     43                 if(m2.m[j][k] == 0) continue;
     44                 ans.m[i][k] = ((ans.m[i][k] + m1.m[i][j] * m2.m[j][k] % mod) % mod) % mod;
     45             }
     46         }
     47     }
     48     return ans;
     49 }
     50 
     51 Matrix quickmul(Matrix m, ll n, ll mod) {
     52     Matrix ans = Matrix();
     53     for(ll i = 1; i <= m.r; i++) {
     54         ans.m[i][i]  = 1;
     55     }
     56     ans.r = m.r;
     57     ans.c = m.c;
     58     while(n) {
     59         if(n & 1) {
     60             ans = mul(m, ans, mod);
     61         }
     62         m = mul(m, m, mod);
     63         n >>= 1;
     64     }
     65     return ans;
     66 }
     67 
     68 ll qm(ll x, ll n, ll mod) {
     69     ll ans = 1, t = x;
     70     while(n) {
     71         if(n & 1) ans = (ans * t) % mod;
     72         t = (t * t) % mod; 
     73         n >>= 1;
     74     }
     75     return ans;
     76 }
     77 int main() {
     78     // freopen("in", "r", stdin);
     79     int T;
     80     scanf("%d", &T);
     81     while(T--) {
     82         cin >> n >> a >> b >> c >> p;
     83         Matrix r;
     84         r.r = 3, r.c = 1;
     85         r.m[1][1] = 1;
     86         r.m[2][1] = 0;
     87         r.m[3][1] = 1;
     88         if(n == 1) {
     89             printf("1
    ");
     90             continue;
     91         }
     92         if(n == 2) {
     93             printf("%I64d
    ", qm(a, b, p));
     94             continue;
     95         }
     96         if(a % p == 0) {
     97             printf("0
    ");
     98             continue;
     99         }
    100         Matrix s;
    101         s.r = s.c = 3;
    102         s.m[1][1] = c, s.m[1][2] = 1, s.m[1][3] = 1;
    103         s.m[2][1] = 1, s.m[2][2] = 0, s.m[2][3] = 0;
    104         s.m[3][1] = 0, s.m[3][2] = 0, s.m[3][3] = 1;
    105         s = quickmul(s, n-2, p-1);
    106         ll ans = 0;
    107         for(int i = 1; i <= r.r; i++) {
    108             ans = (ans + (s.m[1][i] * r.m[i][1]) % (p - 1)) % (p - 1);
    109         }
    110         printf("%I64d
    ", qm(a, (ans*b)%(p-1), p));
    111     }
    112     return 0;
    113 }
  • 相关阅读:
    proxySql 报错connection is locked to hostgroup 100 but trying to reach hostgroup 200 解决办法
    构建harbor私有仓库
    Kubernetes Secret
    Kubernetes conifgMap
    kubernetes Ingress详解
    Kubernetes Service 详解
    RC、RS与Deployment的创建
    Pod的生命周期
    kubeadm安装Kubernetes单节点master集群
    App 需要的费用说明
  • 原文地址:https://www.cnblogs.com/kirai/p/5414214.html
Copyright © 2011-2022 走看看