zoukankan      html  css  js  c++  java
  • [SWUST1744] 方格取数问题(最大流,最大独立集)

    题目链接:https://www.oj.swust.edu.cn/problem/show/1744

    希望取到的点都是不相邻的(相邻:四连通),那么可以用二分图表示相连关系,然后求最大独立集。

    最大独立集就是取的点均不相连,并且权值最大。

    给两部分的点从1到n*n标号,源汇点分别连点的容量是对应点的权值,相邻点之间的容量为inf。

    用点总权值-最小割即为最大独立集。

      1 #include <bits/stdc++.h>
      2 using namespace std;
      3 
      4 typedef struct Edge {
      5     int u, v, w, next;
      6 }Edge;
      7 
      8 const int inf = 0x7f7f7f7f;
      9 const int maxn = 9090;
     10 
     11 int cnt, dhead[maxn];
     12 int cur[maxn], dd[maxn];
     13 Edge dedge[maxn<<3];
     14 int S, T, N;
     15 
     16 void init() {
     17     memset(dhead, -1, sizeof(dhead));
     18     for(int i = 0; i < maxn; i++) dedge[i].next = -1;
     19     S = 0; cnt = 0;
     20 }
     21 
     22 void adde(int u, int v, int w, int c1=0) {
     23     dedge[cnt].u = u; dedge[cnt].v = v; dedge[cnt].w = w; 
     24     dedge[cnt].next = dhead[u]; dhead[u] = cnt++;
     25     dedge[cnt].u = v; dedge[cnt].v = u; dedge[cnt].w = c1; 
     26     dedge[cnt].next = dhead[v]; dhead[v] = cnt++;
     27 }
     28 
     29 bool bfs(int s, int t, int n) {
     30     queue<int> q;
     31     for(int i = 0; i < n; i++) dd[i] = inf;
     32     dd[s] = 0;
     33     q.push(s);
     34     while(!q.empty()) {
     35         int u = q.front(); q.pop();
     36         for(int i = dhead[u]; ~i; i = dedge[i].next) {
     37             if(dd[dedge[i].v] > dd[u] + 1 && dedge[i].w > 0) {
     38                 dd[dedge[i].v] = dd[u] + 1;
     39                 if(dedge[i].v == t) return 1;
     40                 q.push(dedge[i].v);
     41             }
     42         }
     43     }
     44     return 0;
     45 }
     46 
     47 int dinic(int s, int t, int n) {
     48     int st[maxn], top;
     49     int u;
     50     int flow = 0;
     51     while(bfs(s, t, n)) {
     52         for(int i = 0; i < n; i++) cur[i] = dhead[i];
     53         u = s; top = 0;
     54         while(cur[s] != -1) {
     55             if(u == t) {
     56                 int tp = inf;
     57                 for(int i = top - 1; i >= 0; i--) {
     58                     tp = min(tp, dedge[st[i]].w);
     59                 }
     60                 flow += tp;
     61                 for(int i = top - 1; i >= 0; i--) {
     62                     dedge[st[i]].w -= tp;
     63                     dedge[st[i] ^ 1].w += tp;
     64                     if(dedge[st[i]].w == 0) top = i;
     65                 }
     66                 u = dedge[st[top]].u;
     67             }
     68             else if(cur[u] != -1 && dedge[cur[u]].w > 0 && dd[u] + 1 == dd[dedge[cur[u]].v]) {
     69                 st[top++] = cur[u];
     70                 u = dedge[cur[u]].v;
     71             }
     72             else {
     73                 while(u != s && cur[u] == -1) {
     74                     u = dedge[st[--top]].u;
     75                 }
     76                 cur[u] = dedge[cur[u]].next;
     77             }
     78         }
     79     }
     80     return flow;
     81 }
     82 
     83 typedef pair<int, int> pii;
     84 const int dx[5] = {0, 0, 1, -1};
     85 const int dy[5] = {1, -1, 0, 0};
     86 int n, m, icnt;
     87 int G[33][33];
     88 map<pii, int> wobuzhidao;
     89 
     90 inline int id(int x, int y) {
     91     return wobuzhidao[pii(x, y)];
     92 }
     93 
     94 inline bool ok(int x, int y) {
     95     return x >= 1 && x <= n && y >= 1 && y <= m;
     96 }
     97 
     98 int main() {
     99     // freopen("in", "r", stdin);
    100     int u, v, w;
    101     while(~scanf("%d%d",&n,&m)) {
    102         init(); wobuzhidao.clear(); icnt = 0;
    103         memset(G, 0, sizeof(G));
    104         int sum = 0;
    105         for(int i = 1; i <= n; i++) {
    106             for(int j = 1; j <= m; j++) {
    107                 wobuzhidao[pii(i, j)] = ++icnt;
    108                 scanf("%d", &G[i][j]);
    109                 sum += G[i][j];
    110             }
    111         }
    112         S = 0, T = icnt * 2 + 1, N = T + 1;
    113         for(int i = 1; i <= n; i++) {
    114             for(int j = 1; j <= m; j++) {
    115                 adde(S, id(i,j), G[i][j]);
    116                 adde(icnt+id(i,j), T, G[i][j]);
    117                 for(int k = 0; k < 4; k++) {
    118                     int x = i + dx[k];
    119                     int y = j + dy[k];
    120                     if(!ok(x, y)) continue;
    121                     adde(id(i,j), icnt+id(x,y), inf);
    122                 }
    123             }
    124         }
    125         int ret = dinic(S, T, N);
    126         printf("%d
    ", sum - ret / 2);
    127     }
    128     return 0;
    129 }
  • 相关阅读:
    echarts数据包坐标拾取工具
    JS 多个条件判断
    js 实现各浏览器全屏
    前端统计使用插件
    JS 随机排序算法
    js中布尔值为false的六种情况
    Mosaic
    单点登录
    JavaScript数据结构和算法
    一个普通函数的冷僻属性(length、caller、arguments、name、[[Scopes]]和[[FunctionLocation]])
  • 原文地址:https://www.cnblogs.com/kirai/p/6797763.html
Copyright © 2011-2022 走看看