zoukankan      html  css  js  c++  java
  • 2017中国大学生程序设计竞赛

    比赛链接:http://acm.hdu.edu.cn/contests/contest_show.php?cid=772

    昨天嘴巴了5题,结果今天错了2个。真弱啊。。

    1001.水

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 const int maxn = 15;
     5 int n, m;
     6 int vis[maxn];
     7 int solve[maxn];
     8 char st[22];
     9 
    10 int main() {
    11     // freopen("in", "r", stdin);
    12     int T;
    13     scanf("%d", &T);
    14     while(T--) {
    15         scanf("%d%d", &n,&m);
    16         int id, a, b;
    17         memset(vis, 0, sizeof(vis));
    18         memset(solve, 0, sizeof(solve));
    19         for(int i = 0; i < m; i++) {
    20             scanf("%d", &id);
    21             id -= 1000;
    22             scanf("%d:%d",&a,&b);
    23             scanf("%s", st);
    24             if(solve[id]) continue;
    25             if(st[0] == 'A') {
    26                 solve[id] = 1;
    27                 vis[id] += a * 60 + b;
    28             } 
    29             else vis[id] += 20;
    30         }
    31         int tot = 0, ret = 0;
    32         for(int i = 1; i <= n; i++) {
    33             if(solve[i]) {
    34                 tot++;
    35                 ret += vis[i];
    36             }
    37         }
    38         printf("%d %d
    ", tot, ret);
    39     }
    40     return 0;
    41 }

    1002. f(i,j)代表1~i个教室,并且在i上建了一共j个shop的最小花费,更新从f(i-1,j)更新来,在j!=i的时候则是i到x(j)的花费+f(i-1,j)的花费和,最后记录下最小的花费,更新在i点建shop的时候的花费。

    小心给的数据可能不是坐标递增的,所以排个序。

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 #define x first
     5 #define c second
     6 typedef long long LL;
     7 typedef pair<LL, LL> pll;
     8 const int maxn = 3030;
     9 const LL inf = 1LL << 61;
    10 int n;
    11 pll p[maxn];
    12 LL f[maxn][maxn];
    13 
    14 int main() {
    15     // freopen("in", "r", stdin);
    16     while(~scanf("%d", &n)) {
    17         memset(f, 0, sizeof(f));
    18         for(int i = 1; i <= n; i++) {
    19             scanf("%I64d%I64d",&p[i].x,&p[i].c);
    20         }
    21         sort(p+1, p+n+1);
    22         f[1][1] = p[1].c;
    23         for(int i = 2; i <= n; i++) {
    24             LL cur = f[i-1][1];
    25             for(int j = 1; j < i; j++) {
    26                 cur = min(cur, f[i-1][j]);
    27                 f[i][j] = f[i-1][j] + p[i].x - p[j].x;
    28             }
    29             f[i][i] = cur + p[i].c;
    30         }
    31         LL ret = f[n][1];
    32         for(int i = 2; i <= n; i++) {
    33             ret = min(ret, f[n][i]);
    34         }
    35         cout << ret << endl;
    36     }
    37     return 0;
    38 }

    1003.维护前缀gcd和后缀gcd,删的时候求某点两侧gcd的gcd就行了。

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 const int maxn = 100100;
     5 int n, ret;
     6 int a[maxn];
     7 int f[3][maxn];
     8 int gcd(int x, int y) {
     9     return y == 0 ? x : gcd(y, x%y);
    10 }
    11 
    12 int main() {
    13     // freopen("in", "r", stdin);
    14     int T;
    15     scanf("%d", &T);
    16     while(T--) {
    17         scanf("%d", &n);
    18         for(int i = 1; i <= n; i++) {
    19             scanf("%d", &a[i]);
    20         }
    21         ret = 0;
    22         f[0][1] = a[1]; f[1][n] = a[n];
    23         for(int i = 2; i <= n; i++) f[0][i] = gcd(f[0][i-1], a[i]);
    24         for(int i = n - 1; i >= 1; i--) f[1][i] = gcd(f[1][i+1], a[i]);
    25         ret = max(f[1][2], f[0][n-1]);
    26         for(int i = 2; i <= n - 1; i++) {
    27             ret = max(ret, gcd(f[0][i-1], f[1][i+1]));
    28         }
    29         printf("%d
    ", ret);
    30     }
    31     return 0;
    32 }

    1004.相当于问删掉一条一条边以后,仍然能构成原图一样的最小树形图,问一共可以有多少种删边情况。先跑最短路,选中某点的属于最短路上的入边,将这些入边组合起来便是最小树形图。相当于问有多少种入边权值相同但是边不同的情况。统计某点所有和最短路长度相同的边的个数作为贡献,最后将所有点的贡献乘起来就行。注意有不连通的情况。

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 typedef long long LL;
     5 typedef pair<LL, int> pli;
     6 const LL mod = (LL)1e9+7;
     7 const LL inf = 1LL << 62;
     8 const int maxn = 55;
     9 priority_queue<pli, vector<pli>, greater<pli> > pq;
    10 int n;
    11 char G[maxn][maxn];
    12 bool vis[maxn];
    13 int to[maxn][maxn];
    14 LL d[maxn];
    15 LL mut[maxn];
    16 
    17 int dij(int s) {
    18     for(int i = 0; i < n; i++) d[i] = inf;
    19     memset(vis, 0, sizeof(vis));
    20     while(!pq.empty()) pq.pop();
    21     vis[s] = 1; d[s] = 0;
    22     pq.push(pli(0, s));
    23     while(!pq.empty()) {
    24         pli tmp = pq.top(); pq.pop();
    25         LL pw = tmp.first;
    26         int u = tmp.second;
    27         for(int v = 0; v < n; v++) {
    28             if(vis[v]) continue;
    29             if(G[u][v] == '0') continue;
    30             if(d[v] > d[u] + G[u][v] - '0') {
    31                 d[v] = d[u] + G[u][v] - '0';
    32                 pq.push(pli(d[v], v));
    33             }
    34         }
    35     }
    36     for(int i = 0; i < n; i++) if(d[i] == inf) return 0;
    37     return 1;
    38 }
    39 
    40 void dfs(int u) {
    41     for(int v = 0; v < n; v++) {
    42         if(G[u][v]-'0' && d[v] == d[u]+G[u][v]-'0') {
    43             if(to[u][v]) continue;
    44             to[u][v] = 1; mut[v]++;
    45             dfs(v);
    46         }
    47     }
    48 }
    49 
    50 int main() {
    51     // freopen("in", "r", stdin);
    52     while(~scanf("%d", &n)) {
    53         memset(mut, 0, sizeof(mut));
    54         memset(to, 0, sizeof(to));
    55         for(int i = 0; i < n; i++) {
    56             scanf("%s", G[i]);
    57         }
    58         int ok = dij(0);
    59         dfs(0);
    60         LL ret = 1;
    61         for(int i = 1; i < n; i++) ret = ret * mut[i] % mod;
    62         if(!ok) puts("0");
    63         else printf("%I64d
    ", ret);
    64     }
    65     return 0;
    66 }

    1005.快速幂水过。

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 typedef long long LL;
     5 const LL mod = (LL)1e9+7;
     6 LL n, k;
     7 
     8 LL mul(LL i, LL k) {
     9     LL ret = 1;
    10     while(k) {
    11         if(k & 1) ret = (ret * i) % mod;
    12         i = (i * i) % mod;
    13         k >>= 1;
    14     }
    15     return ret;
    16 }
    17 
    18 int main() {
    19     // freopen("in", "r", stdin);
    20     int T;
    21     scanf("%d", &T);
    22     while(T--) {
    23         scanf("%I64d%I64d",&n,&k);
    24         LL ret = 0;
    25         for(LL i = 1; i <= n; i++) {
    26             ret = (ret + mul(i, k)) % mod;
    27         }
    28         cout << ret % mod << endl;
    29     }
    30     return 0;
    31 }

    1007.贪心,从左往右扫,遇到2则记录值+1,希望让后面的1与它匹配。假如没有2的边却出现了1的边,则暂时不计数。最后看计数结果是不是0。注意奇数点直接输出No。

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 const int maxn = 100100;
     5 int n;
     6 
     7 int main() {
     8     // freopen("in", "r", stdin);
     9     int T, v;
    10     scanf("%d", &T);
    11     while(T--) {
    12         scanf("%d", &n);
    13         int two = 0;
    14         for(int i = 2; i <= n; i++) {
    15             scanf("%d", &v);
    16             if(v == 1) {
    17                 if(two) two--;
    18             }
    19             else two++;
    20         }
    21         if(n & 1) {
    22             printf("No
    ");
    23             continue;
    24         }
    25         if(!two) printf("Yes
    ");
    26         else printf("No
    ");
    27     }
    28     return 0;
    29 }

    1008.打表发现递推式f(n)=f(n-1)+f(n-3),f(2)=3,f(3)=4,f(4)=6。

    构造矩阵:

    1 0 1

    1 0 0

    0 1 0

    快速水过。

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 typedef long long LL;
     5 
     6 const LL mod = (LL)1E9+7;
     7 const LL maxn = 11;
     8 typedef struct Matrix {
     9     LL m[maxn][maxn];
    10     LL r;
    11     LL c;
    12     Matrix() {
    13         r = c = 0;
    14         memset(m, 0, sizeof(m));
    15     } 
    16 } Matrix;
    17 Matrix mul(Matrix m1, Matrix m2) {
    18     Matrix ans = Matrix();
    19     ans.r = m1.r; ans.c = m2.c;
    20     for(LL i = 1; i <= m1.r; i++) {
    21         for(LL j = 1; j <= m2.r; j++) {
    22             for(LL k = 1; k <= m2.c; k++) {
    23                 if(m2.m[j][k] == 0) continue;
    24                 ans.m[i][k] = ((ans.m[i][k] + (m1.m[i][j] * m2.m[j][k]) % mod) % mod) % mod;
    25             }
    26         }
    27     }
    28     return ans;
    29 }
    30 Matrix quickmul(Matrix m, LL n) {
    31     Matrix ans = Matrix();
    32     for(LL i = 1; i <= m.r; i++) ans.m[i][i] = 1;
    33     ans.r = m.r;
    34     ans.c = m.c;
    35     while(n) {
    36         if(n & 1) ans = mul(m, ans);
    37         m = mul(m, m); n >>= 1;
    38     }
    39     return ans;
    40 }
    41 
    42 LL n;
    43 
    44 inline bool scan_d(LL &num) {
    45     char in;bool IsN=false;
    46     in=getchar();
    47     if(in==EOF) return false;
    48     while(in!='-'&&(in<'0'||in>'9')) in=getchar();
    49     if(in=='-'){ IsN=true;num=0;}
    50     else num=in-'0';
    51     while(in=getchar(),in>='0'&&in<='9'){
    52         num*=10,num+=in-'0';
    53     }
    54     if(IsN) num=-num;
    55     return true;
    56 }
    57 
    58 
    59 int main() {
    60     // freopen("in", "r", stdin);
    61     LL T;
    62     scan_d(T);
    63     while(T--) {
    64         scan_d(n);
    65         if(n == 2) {
    66             printf("3
    ");
    67             continue;
    68         }
    69         if(n == 3) {
    70             printf("4
    ");
    71             continue;
    72         }
    73         if(n == 4) {
    74             printf("6
    ");
    75             continue;
    76         }
    77         Matrix a; a.r = a.c = 3;
    78         a.m[1][1] = 1; a.m[1][2] = 0; a.m[1][3] = 1;
    79         a.m[2][1] = 1; a.m[2][2] = 0; a.m[2][3] = 0;
    80         a.m[3][1] = 0; a.m[3][2] = 1; a.m[3][3] = 0;
    81         Matrix b = quickmul(a, n-4);
    82         Matrix p; p.r = 3; p.c = 1;
    83         p.m[1][1] = 6; p.m[2][1] = 4; p.m[3][1] = 3;
    84         p = mul(b, p);
    85         printf("%I64d
    ", (p.m[1][1]) % mod);
    86     }
    87     return 0;
    88 }
  • 相关阅读:
    【NX二次开发】Block UI 多行字符串
    【NX二次开发】Block UI 字符串
    【NX二次开发】Block UI 枚举
    【NX二次开发】Block UI 切换开关
    Css
    禁止多行文本框textarea拖拽
    HTML5+Css3-webkit-filter
    Google Chrome一些小技巧
    js获取节点
    getAttribute:取得属性; setAttribute:设置属性。
  • 原文地址:https://www.cnblogs.com/kirai/p/6821524.html
Copyright © 2011-2022 走看看