题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818
必须用线性筛。
1 #include <bits/stdc++.h> 2 using namespace std; 3 typedef long long LL; 4 const int maxn = 10001001; 5 LL phi[maxn], sum[maxn], n; 6 bool isprime[maxn]; 7 LL prime[maxn]; 8 int tot; 9 bool mark[maxn+10]; 10 void getphi() 11 { 12 int i,j; 13 phi[1]=1; 14 for(i=2;i<=maxn;i++) 15 { 16 if(!mark[i]) 17 { 18 prime[++tot]=i;//筛素数的时候首先会判断i是否是素数。 19 phi[i]=i-1;//当 i 是素数时 phi[i]=i-1 20 } 21 for(j=1;j<=tot;j++) 22 { 23 if(i*prime[j]>maxn) break; 24 mark[i*prime[j]]=1;//确定i*prime[j]不是素数 25 if(i%prime[j]==0)//接着我们会看prime[j]是否是i的约数 26 {phi[i*prime[j]]=phi[i]*prime[j];break;} 27 else phi[i*prime[j]]=phi[i]*(prime[j]-1);//其实这里prime[j]-1就是phi[prime[j]],利用了欧拉函数的积性 28 } 29 } 30 } 31 32 namespace fastIO { 33 #define BUF_SIZE 100000 34 //fread -> read 35 bool IOerror = 0; 36 inline char nc() { 37 static char buf[BUF_SIZE], *p1 = buf + BUF_SIZE, *pend = buf + BUF_SIZE; 38 if (p1 == pend) { 39 p1 = buf; 40 pend = buf + fread(buf, 1, BUF_SIZE, stdin); 41 if (pend == p1) { 42 IOerror = 1; 43 return -1; 44 } 45 } 46 return *p1++; 47 } 48 inline bool blank(char ch) { 49 return ch == ' ' || ch == ' ' || ch == ' ' || ch == ' '; 50 } 51 inline int read(LL &x) { 52 char ch; 53 while (blank(ch = nc())); 54 if (IOerror) 55 return 0; 56 for (x = ch - '0'; (ch = nc()) >= '0' && ch <= '9'; x = x * 10 + ch - '0'); 57 return 1; 58 } 59 #undef BUF_SIZE 60 }; 61 62 inline void out(LL x) { 63 if (x > 9) out(x / 10); 64 putchar(x % 10 + '0'); 65 } 66 67 signed main() { 68 // freopen("in", "r", stdin); 69 getphi(); 70 sum[1] = 0; 71 for(int i = 2; i < maxn; i++) sum[i] = sum[i-1] + phi[i]; 72 while(fastIO::read(n)) { 73 LL ret = 0; 74 for(int i = 1; i < tot && prime[i] <= n; i++) { 75 LL p = prime[i]; 76 ret += 2LL * sum[n/p] + 1; 77 } 78 out(ret); putchar(' '); 79 } 80 return 0; 81 }