zoukankan      html  css  js  c++  java
  • POJ 2406 KMP/后缀数组

    题目链接:http://poj.org/problem?id=2406

    题意:给定一个字符串,求由一个子串循环n次后可得到原串,输出n[即输出字符串的最大循环次数]

    思路一:KMP求最小循环机,然后就能求出循环次数。

    #define _CRT_SECURE_NO_DEPRECATE
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<string>
    #include<queue>
    #include<vector>
    #include<time.h>
    #include<cmath>
    using namespace std;
    typedef long long int LL;
    const int MAXN = 1000000 + 5;
    char str[MAXN];
    int Next[MAXN],len;
    void getNext(){
        int i=0, k = -1;
        Next[0] = -1;
        while (i < len){
            if (k == -1 || str[i] == str[k]){
                ++i; ++k;
                Next[i] = k;
            }
            else{
                k = Next[k];
            }
        }
    }
    int main(){
    //#ifdef kirito
    //    freopen("in.txt","r",stdin);
    //    freopen("out.txt","w",stdout);
    //#endif
    //    int start = clock();
        while (scanf("%s", str) && str[0] != '.'){
            len = strlen(str);
            getNext();
            if (Next[len] && (len % (len - Next[len])== 0)){
                printf("%d
    ", len / (len-Next[len]));
            }
            else{
                printf("1
    ");
            }
        }
    //#ifdef LOCAL_TIME
    //    cout << "[Finished in " << clock() - start << " ms]" << endl;
    //#endif
        return 0;
    }

    思路二:后缀数组,直接根据09年oi论文<<后缀数组——出来字符串的有力工具>>的解法。

    穷举字符串S 的长度k,然后判断是否满足。判断的时候,先看字符串L 的长度能否被k 整除,再看suffix(1)和suffix(k+1)的最长公共前缀是否等于n-k。在询问最长公共前缀的时候,suffix(1)是固定的,所以RMQ问题没有必要做所有的预处理, 只需求出height 数组中的每一个数到height[rank[1]]之间的最小值即可。整个做法的时间复杂度为O(n)。

    补充:该题字符串长度比较大,达到1e7的上限,所以O(nlogn)的倍增会TLE,所以考虑O(n)的DC3。 但是还是要2500ms才能AC,对于KMP的125ms来说,该题还是KMP比较优而且代码了比较少,不过学习到求最小循环次数还可以用后缀数组来做。

    #define _CRT_SECURE_NO_DEPRECATE
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<string>
    #include<queue>
    #include<vector>
    #include<time.h>
    #include<cmath>
    using namespace std;
    typedef long long int LL;
    #define INF 0x3f3f3f3f
    #define F(x) ((x)/3+((x)%3==1?0:tb))
    #define G(x) ((x)<tb?(x)*3+1:((x)-tb)*3+2)
    const int MAXN = 10000000 + 5;
    int wa[MAXN], wb[MAXN], wv[MAXN], WS[MAXN];
    int c0(int *r, int a, int b)
    {
        return r[a] == r[b] && r[a + 1] == r[b + 1] && r[a + 2] == r[b + 2];
    }
    int c12(int k, int *r, int a, int b)
    {
        if (k == 2) return r[a]<r[b] || r[a] == r[b] && c12(1, r, a + 1, b + 1);
        else return r[a]<r[b] || r[a] == r[b] && wv[a + 1]<wv[b + 1];
    }
    void sort(int *r, int *a, int *b, int n, int m)
    {
        int i;
        for (i = 0; i<n; i++) wv[i] = r[a[i]];
        for (i = 0; i<m; i++) WS[i] = 0;
        for (i = 0; i<n; i++) WS[wv[i]]++;
        for (i = 1; i<m; i++) WS[i] += WS[i - 1];
        for (i = n - 1; i >= 0; i--) b[--WS[wv[i]]] = a[i];
        return;
    }
    void dc3(int *r, int *sa, int n, int m)
    {
        int i, j, *rn = r + n, *san = sa + n, ta = 0, tb = (n + 1) / 3, tbc = 0, p;
        r[n] = r[n + 1] = 0;
        for (i = 0; i<n; i++) if (i % 3 != 0) wa[tbc++] = i;
        sort(r + 2, wa, wb, tbc, m);
        sort(r + 1, wb, wa, tbc, m);
        sort(r, wa, wb, tbc, m);
        for (p = 1, rn[F(wb[0])] = 0, i = 1; i<tbc; i++)
            rn[F(wb[i])] = c0(r, wb[i - 1], wb[i]) ? p - 1 : p++;
        if (p<tbc) dc3(rn, san, tbc, p);
        else for (i = 0; i<tbc; i++) san[rn[i]] = i;
        for (i = 0; i<tbc; i++) if (san[i]<tb) wb[ta++] = san[i] * 3;
        if (n % 3 == 1) wb[ta++] = n - 1;
        sort(r, wb, wa, ta, m);
        for (i = 0; i<tbc; i++) wv[wb[i] = G(san[i])] = i;
        for (i = 0, j = 0, p = 0; i<ta && j<tbc; p++)
            sa[p] = c12(wb[j] % 3, r, wa[i], wb[j]) ? wa[i++] : wb[j++];
        for (; i<ta; p++) sa[p] = wa[i++];
        for (; j<tbc; p++) sa[p] = wb[j++];
        return;
    }
    int Rank[MAXN], height[MAXN], sa[MAXN];
    void calheight(int *r, int *sa, int n){
        int i, j, k = 0;
        for (i = 1; i <= n; i++) Rank[sa[i]] = i;
        for (i = 0; i < n; height[Rank[i++]] = k)
            for (k ? k-- : 0, j = sa[Rank[i] - 1]; r[i + k] == r[j + k]; k++);
        return;
    }
    int len, r[MAXN], LCP[MAXN]; 
    char str[MAXN];
    void solve(){
        //LCP[i]:suffix(0)和suffix(i)的最长公共前缀
        for (int i = Rank[0] - 1, lcpval = INF; i > 0; i--){
            lcpval = min(lcpval, height[i + 1]);
            LCP[sa[i]] = lcpval;
        }
        for (int i = Rank[0] + 1, lcpval = INF; i <= len; i++){
            lcpval = min(lcpval, height[i]);
            LCP[sa[i]] = lcpval;
        }
        int ans = 1;
        for (int k = 1; k <= len; k++){
            if (len%k != 0){ continue; }
            if (LCP[k] == len - k){ //第一个找到一定是最优解
                ans = len / k;
                break;
            }
        }
        printf("%d
    ", ans);
    }
    int main(){
        //#ifdef kirito
        //    freopen("in.txt","r",stdin);
        //    freopen("out.txt","w",stdout);
        //#endif
        //    int start = clock();
        while (scanf("%s", str) && str[0] != '.'){
            len = strlen(str);
            for (int i = 0; i <= len; i++){
                if (i == len){ r[i] = 0; continue; }
                r[i] = (int)str[i];
            }
            dc3(r, sa, len + 1, 256);
            calheight(r, sa, len);
            solve();
        }
        //#ifdef LOCAL_TIME
        //    cout << "[Finished in " << clock() - start << " ms]" << endl;
        //#endif
        return 0;
    }
  • 相关阅读:
    Flask-1-05-Cookie&Session
    Flask-1-05-Response
    Flask-1-04-Request
    Python3 装饰器无参有参 Egon老师视频
    python魔法方法、构造函数、序列与映射、迭代器、生成器---python基础教程
    Python3(廖雪峰教程) 链接
    Python面向对象之私有属性和方法(转载)
    python3 isinstance
    生成器 讲得不错的帖子
    Python3 pickle模块
  • 原文地址:https://www.cnblogs.com/kirito520/p/5756935.html
Copyright © 2011-2022 走看看