zoukankan      html  css  js  c++  java
  • POJ 3415 后缀数组

    题目链接:http://poj.org/problem?id=3415

    题意:给定2个串[A串和B串],求两个串公共子串长度大于等于k的个数。

    思路:首先是两个字符串的问题。所以想用一个'#'把两个字符串拼接起来。求后缀数组。 然后按照k把height数组分组。大于等于k的为一组,然后就是统计每组的贡献。对于每一组的贡献即是组内所有A串的后缀和B串的后缀的lcp值,即为val.那么val对于答案的贡献为(val-k+1)。如果我们暴力每组的AB串后缀的组合。时间复杂度是O(n^2).不能满足要求。所以要用另外的办法来优化计算。利用height数组的性质,满足单调不增的特点,所以我们可以用一个单调栈来优化计算。 对于每个分组。我们分2种情况来计算。一:把B串的后缀放入单调栈。每枚举到一个A串后缀就和单调栈的值进行计算贡献。二:把A串的后缀放入单调栈。每枚举到一个B串后缀就和单调栈的值进行计算贡献。 对于如何维护这个单调栈:如果对于情况一,如果每遇到一个A串后缀就和栈内所有的B后缀都计算一遍会退化到O(n^2).所以栈还要维护一个前缀贡献值,这样就可以把复杂度将为O(n)。       关于维护前缀贡献值是从这篇博客学习到的。 该题也可以用后缀自动机来写,而且好像比后缀数组容易。

    #define _CRT_SECURE_NO_DEPRECATE
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<string>
    #include<queue>
    #include<vector>
    #include<time.h>
    #include<cmath>
    #include<stack>
    using namespace std;
    typedef long long int LL;
    const int MAXN = 100000 * 2 + 10;
    int cmp(int *r, int a, int b, int l){
        return r[a] == r[b] && r[a + l] == r[b + l];
    }
    int wa[MAXN], wb[MAXN], wv[MAXN], WS[MAXN];
    void da(int *r, int *sa, int n, int m){
        int i, j, p, *x = wa, *y = wb, *t;
        for (i = 0; i < m; i++) { WS[i] = 0; }
        for (i = 0; i < n; i++) { WS[x[i] = r[i]]++; }
        for (i = 1; i < m; i++) { WS[i] += WS[i - 1]; }
        for (i = n - 1; i >= 0; i--) { sa[--WS[x[i]]] = i; }
        for (j = 1, p = 1; p<n; j *= 2, m = p)
        {
            for (p = 0, i = n - j; i < n; i++) { y[p++] = i; }
            for (i = 0; i < n; i++) {
                if (sa[i] >= j){ y[p++] = sa[i] - j; }
            }
            for (i = 0; i < n; i++) { wv[i] = x[y[i]]; }
            for (i = 0; i < m; i++) { WS[i] = 0; }
            for (i = 0; i < n; i++) { WS[wv[i]]++; }
            for (i = 1; i < m; i++) { WS[i] += WS[i - 1]; }
            for (i = n - 1; i >= 0; i--) { sa[--WS[wv[i]]] = y[i]; }
            for (t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++){
                x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++;
            }
        }
        return;
    }
    int Rank[MAXN], height[MAXN], sa[MAXN];
    void calheight(int *r, int *sa, int n){
        int i, j, k = 0;
        for (i = 1; i <= n; i++) { Rank[sa[i]] = i; }
        for (i = 0; i < n; height[Rank[i++]] = k){
            for (k ? k-- : 0, j = sa[Rank[i] - 1]; r[i + k] == r[j + k]; k++);
        }
        return;
    }
    int r[MAXN], len, k, index;
    char str[MAXN];
    struct Node{
        int cnt, height; LL sum;
        //cnt:后缀个数; height:sa[i]和sa[i-1]的lcp;sum:前缀贡献和
    }S[MAXN];
    void solve(){
        LL ans = 0; int top=0;
        for (int i = 1; i <= len; i++){ //计算A串的贡献
            if (height[i] < k) top = 0;
            else {
                int cnt = 0;
                while (top && height[i] <= S[top - 1].height) cnt += S[--top].cnt; //单调栈
                S[top].cnt = cnt + (sa[i - 1] > index);  //属于B串
                S[top].height = height[i]; //记录height
                S[top].sum = top ? S[top - 1].sum : 0; //累加之前的[前缀]贡献
                S[top].sum += (LL)(S[top].height - k + 1) * S[top].cnt; //计算当前贡献
                if (sa[i] < index) ans += S[top].sum; //属于A串,统计贡献
                top++;
            }
        }
        top = 0;
        for (int i = 1; i <= len; i++){ //与上面相反
            if (height[i] < k) top = 0;
            else {
                int cnt = 0;
                while (top && height[i] <= S[top - 1].height) cnt += S[--top].cnt;
                S[top].cnt = cnt + (sa[i - 1] < index);
                S[top].height = height[i];
                S[top].sum = top ? S[top - 1].sum : 0;
                S[top].sum += (LL)(S[top].height - k + 1) * S[top].cnt;
                if (sa[i] > index) ans += S[top].sum;
                top++;
            }
        }
        printf("%lld
    ", ans);
    }
    int main(){
        while (scanf("%d", &k) && k){
            scanf("%s", str); index = strlen(str); str[index] = '#';
            scanf("%s", str + index + 1); len = strlen(str); str[len] = '$';
            for (int i = 0; i <= len; i++){
                r[i] = str[i];
            }
            r[index] = 1; r[len] = 0;
            da(r, sa, len+1, 128);
            calheight(r, sa, len);
            solve();
        }
        return 0;
    }
  • 相关阅读:
    2014年终总结
    杭电2014——青年歌手大奖赛_评委会打分
    nyoj---t448(寻找最大数)
    nyoj_t218(Dinner)
    将string转换成char*
    nyoj71--独木舟上的旅行
    基于贪心算法的几类区间覆盖问题
    会场安排问题—NYOJ14
    南阳理工ACM——106背包问题
    南阳理工91——阶乘之和
  • 原文地址:https://www.cnblogs.com/kirito520/p/5839205.html
Copyright © 2011-2022 走看看