1. flume安装
(1)下载:wget http://archive.cloudera.com/cdh5/cdh/5/flume-ng-1.6.0-cdh5.7.1.tar.gz
(2)解压:tar zxvf flume-ng-1.6.0-cdh5.7.1.tar.gz
(3)环境变量:
export FLUME_HOME=/xxx/soft/apache-flume-1.6.0-cdh5.7.1-bin export PATH=$PATH:$FLUME_HOME/bin
source /etc/profile
vim conf/flume-env.sh
export JAVA_HOME=/letv/soft/java export HADOOP_HOME=/etc/hadoop
(4)创建avro.conf
vim conf/avro.conf a1.sources=source1 a1.channels=channel1 a1.sinks=sink1 a1.sources.source1.type=avro a1.sources.source1.bind=10.112.28.240 a1.sources.source1.port=4141 a1.sources.source1.channels = channel1 a1.channels.channel1.type=memory a1.channels.channel1.capacity=10000 a1.channels.channel1.transactionCapacity=1000 a1.channels.channel1.keep-alive=30 a1.sinks.sink1.type = org.apache.flume.sink.kafka.KafkaSink a1.sinks.sink1.topic = hdtest.topic.jenkin.com a1.sinks.sink1.brokerList = 10.11.97.57:9092,10.11.97.58:9092,10.11.97.60:9092 a1.sinks.sink1.requiredAcks = 0 a1.sinks.sink1.sink.batchSize = 20 a1.sinks.sink1.channel = channel1
source1.bind:flume安装的服务器
sink1.brokerList:kafka集群
sink1.topic:发往kafka的topic
(5)运行flume:
flume-ng agent --conf /xxx/soft/apache-flume-1.6.0-cdh5.7.1-bin/conf --conf-file /xxx/soft/apache-flume-1.6.0-cdh5.7.1-bin/conf/avro.conf --name a1 -Dflume.root.logger=INFO,console
2. 编写日志生产程序
(1)工程结构
2. log4j.properties
log4j.rootLogger=INFO,console # for package com.demo.kafka, log would be sent to kafka appender. log4j.logger.com.demo.flume=info,stdout,file,flume ### flume ### log4j.appender.flume = org.apache.flume.clients.log4jappender.Log4jAppender log4j.appender.flume.Hostname = 10.112.28.240 log4j.appender.flume.Port = 4141 log4j.appender.flume.UnsafeMode = true log4j.appender.flume.layout=org.apache.log4j.PatternLayout log4j.appender.flume.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %p [%c:%L] - %m%n # appender console log4j.appender.console=org.apache.log4j.ConsoleAppender log4j.appender.console.target=System.out log4j.appender.console.layout=org.apache.log4j.PatternLayout log4j.appender.console.layout.ConversionPattern=%d [%-5p] [%t] - [%l] %m%n ### file ### log4j.appender.file=org.apache.log4j.DailyRollingFileAppender log4j.appender.file.Threshold=INFO log4j.appender.file.File=./logs/tracker/tracker.log log4j.appender.file.Append=true log4j.appender.file.DatePattern='.'yyyy-MM-dd log4j.appender.file.layout=org.apache.log4j.PatternLayout log4j.appender.file.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %c{1} [%p] %m%n ### stdout ### log4j.appender.stdout=org.apache.log4j.ConsoleAppender log4j.appender.stdout.Threshold=INFO log4j.appender.stdout.Target=System.out log4j.appender.stdout.layout=org.apache.log4j.PatternLayout log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %c{1} [%p] %m%n
配置解释:flume服务器运行在10.112.28.240上,并且监听的端口为4141,在log4j中只需要将日志发送到10.112.28.240的4141端口就能成功的发送到flume上。flume会监听并收集该端口上的数据信息,然后将它转化成kafka event,并发送到kafka集群hdtest.topic.jenkin.com topic下。
3. 日志生产者
public class FlumeTest { private static final Logger LOGGER = Logger.getLogger(FlumeTest.class); public static void main(String[] args) throws InterruptedException { for (int i = 20; i < 100; i++) { LOGGER.info("Info [" + i + "]"); Thread.sleep(1000); } } }
4. kafka日志消费者
public class Consumer { public static void main(String[] args) { System.out.println("begin consumer"); connectionKafka(); System.out.println("finish consumer"); } @SuppressWarnings("resource") public static void connectionKafka() { Properties props = new Properties(); props.put("bootstrap.servers", "10.11.97.57:9092,10.11.97.58:9092,10.11.97.60:9092"); props.put("group.id", "testConsumer"); props.put("enable.auto.commit", "true"); props.put("auto.commit.interval.ms", "1000"); props.put("session.timeout.ms", "30000"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList("hdtest.topic.jenkin.com")); while (true) { ConsumerRecords<String, String> records = consumer.poll(100); try { Thread.sleep(2000); } catch (InterruptedException e) { e.printStackTrace(); } for (ConsumerRecord<String, String> record : records) { System.out.printf("===================offset = %d, key = %s, value = %s", record.offset(), record.key(), record.value()); } } } }