题目链接
题意
给定一张网格,格子中有些地方有柱子,有些柱子上面有蜥蜴。
每个柱子只能承受有限只蜥蜴从上面经过。每只蜥蜴每次能走到相距曼哈顿距离(leq k)的格子中去。
问有多少只蜥蜴能走出网格。
分析
参考博文
拆点
因为这道题中的容量不是限制在边上,而是限制在点上的,所以可以考虑将一个点拆成两个点,中间再加一条边,边的容量即为原先点上的值。
想法很重要。
建图
-
对于起始有蜥蜴的点,从源点(s)连一条容量为(1)的边到它;
-
对于中间点,拆成两点:点(1)到点(2)的容量为点的承受值;点(2)再代表原先的该点向外连向其他点,权值可以赋为大于等于容量的任意值;
-
对于可以直接跳出去的点,向汇点(e)连一条边,容量为该点的承受值。
跑最大流
Code
#include <bits/stdc++.h>
#define maxn 1010
#define maxp 1010
#define inf 0x3f3f3f3f
#define id1(i,j) (idx(i,j)<<1)
#define id2(i,j) (id1(i,j)|1)
using namespace std;
typedef long long LL;
int dep[maxp], cur[maxp], n, m, tot, k, ne[maxp];
char cnt[maxn][maxn], s[maxn];
inline int idx(int i, int j) { return (i-1)*m+j; }
inline bool check(int i, int j) { return i > 0 && i <= n && j > 0 && j <= m && cnt[i][j]!='0'; }
struct Edge { int to, ne, c; }edge[maxp<<4];
void add(int u, int v, int c) {
edge[tot] = {v, ne[u], c};
ne[u] = tot++;
edge[tot] = {u, ne[v], 0};
ne[v] = tot++;
}
void init() {
tot = 0; memset(ne, -1, sizeof(ne));
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (cnt[i][j] == '0') continue;
if (i-k <= 0 || i+k > n || j-k <= 0 || j+k > m) { add(id1(i,j), 1, cnt[i][j]-'0'); continue; }
add(id1(i,j), id2(i,j), cnt[i][j]-'0');
for (int r = i-k; r <= i+k; ++r) {
for (int c = j-k; c <= j+k; ++c) {
if (abs(i-r)+abs(j-c) > k) continue;
if (check(r, c)) add(id2(i, j), id1(r, c), inf);
}
}
}
}
}
int bfs(int src) {
queue<int> q;
while (!q.empty()) q.pop();
memset(dep, 0, sizeof(dep));
dep[src] = 1;
q.push(src);
while (!q.empty()) {
int u = q.front(); q.pop();
for (int i = ne[u]; ~i; i = edge[i].ne) {
int v = edge[i].to;
if (edge[i].c > 0 && !dep[v]) {
dep[v] = dep[u]+1;
q.push(v);
}
}
}
return dep[1];
}
int dfs(int u, int flow) {
if (u == 1) return flow;
for (int& i = cur[u]; ~i; i = edge[i].ne) {
int v = edge[i].to;
if (edge[i].c > 0 && dep[v]-dep[u]==1) {
int c = dfs(v, min(flow, edge[i].c));
if (c) {
edge[i].c -= c;
edge[i^1].c += c;
return c;
}
}
}
return 0;
}
int kas;
void work() {
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; ++i) {
scanf("%s", cnt[i]+1);
}
m = strlen(cnt[1]+1);
init();
int all = 0;
for (int i = 1; i <= n; ++i) {
scanf("%s", s+1);
for (int j = 1; j <= m; ++j) {
if (s[j] == 'L') ++all, add(0, id1(i,j), 1);
}
}
int pcnt = id2(n, m)+1, ans=0, ret;
while (bfs(0)) {
for (int i = 0; i < pcnt; ++i) cur[i] = ne[i];
while (ret = dfs(0, inf)) ans += ret;
}
ans = all-ans;
printf("Case #%d: ", ++kas);
if (!ans) puts("no lizard was left behind.");
else if (ans==1) puts("1 lizard was left behind.");
else printf("%d lizards were left behind.
", ans);
}
int main() {
int T;
scanf("%d", &T);
while (T--) work();
return 0;
}