zoukankan      html  css  js  c++  java
  • AtCoder Regular Contest 090 F

    题目链接

    Description

    For a positive integer (n), let us define (f(n)) as the number of digits in base (10).

    You are given an integer (S(1≤S≤10^8)). Count the number of the pairs of positive integers ((l,r)) ((l≤r)) such that (f(l)+f(l+1)+…+f(r)=S), and find the count modulo (10^9+7).

    题解

    分两种情况讨论。

    (1. f(l)leq 7)

    则至多有(10^8/8=12500000)个八位数,所以(rleq 22500000).

    因此,可以预处理出(f[1..22500000]),然后采用 尺取法 得到 (f(l)leq 7)((l,r))组数.

    (2. f(l)geq 8)

    此时,由 (S) 的限制,易知 (f(r)-f(l)leq 1).

    (t=r-l+1),枚举 (t)

    (f(l)==f(r))

    则显然要求 (t|S),

    (N)位数的个数右 (D_N) 个,则符合要求的 ((l,r)) 组数为 (D_{frac{S}{t}}-t+1)

    (f(r)-f(l)==1)

    (len=f(l)) 且长度为 (len) 的数字有 (x) 个,长度为 (len+1) 的数字有 (y) 个,则有

    [egin{cases} x+y=t\ x*len+y*(len+1)=S end{cases} ]

    其中(len=lfloorfrac{S}{t} floor).
    (S=tq+r (0leq rlt t))
    则方程组可转化为

    [egin{cases} x+y=t\ xq+y(q+1)=tq+r end{cases} ]

    所以有

    [egin{cases} x=t-r=t-S\%t\ y=r=S\%t end{cases} ]

    即对每个(t)此时有且仅有一组解。

    统计上述三部分的答案,即为最终答案。

    Code

    #include <bits/stdc++.h>
    #define lim1 10000000
    #define lim2 22500000
    using namespace std;
    typedef long long LL;
    int f[lim2+10];
    const LL mod = 1e9+7;
    void init() {
        int l = 1, r = 10;
        for (int k = 1; k <= 7; ++k) {
            for (int i = l; i < r; ++i) f[i] = k;
            l = r; r *= 10;
        }
        for (int i = lim1; i <= lim2; ++i) f[i] = 8;
    }
    LL poww(LL a, LL b) {
        LL ret = 1;
        while (b) {
            if (b & 1) (ret *= a) %= mod;
            (a *= a) %= mod;
            b >>= 1;
        }
        return ret;
    }
    LL count1(LL x) {
        int l = 1, r = 1, ret = 0; LL sum = 0;
        while (true) {
            while (r <= lim2 && sum < x) sum += f[r++];
            if (sum < x) break;
            if (sum == x) (ret += 1) %= mod;
            sum -= f[l++];
            if (l == lim1) break;
        }
        return ret;
    }
    LL count2(LL x) {
        LL upp = x/8,
            ret = upp;
        for (int t = 1; t <= upp; ++t) {
            if (x % t == 0) {
                int len = x / t;
                LL sub = 9 * poww(10, len-1) % mod;
                (sub += mod - t) %= mod;
                (ret += sub) %= mod;
            }
        }
        return ret;
    }
    int main() {
        init();
        LL n;
        scanf("%lld", &n);
        LL ans1 = count1(n), ans2 = count2(n);
        printf("%lld
    ", (ans1+ans2)%mod);
        return 0;
    }
    
    
  • 相关阅读:
    事务的隔离级别
    常用linux命令
    cpu.load avg和cpu使用率的区别
    【Leetcode】55. Jump Game
    【Leetcode】322. coin-change
    34.find-first-and-last-position-of-element-in-sorted-array
    【LeetCode】56.merge-intervals
    Leetcode】210.course-schedule-ii
    基于Thread实现自己的定时器Timer
    Boost--内存管理--(1)智能指针
  • 原文地址:https://www.cnblogs.com/kkkkahlua/p/8400712.html
Copyright © 2011-2022 走看看