「ZJOI2017」树状数组
以下均基于模2意义下,默认(n,m)同阶。
熟悉树状数组的应该可以发现,这题其实是求(l-1)和(r)位置值相同的概率。
显然(l=1)的情况需要特盘。
大暴力
对于(l=1)的情况,可以发现一个操作不会产生影响当且仅当增加(r)的值,而其他情况会改变(l-1)或(r)。
对于(l!=1)的情况:
针对一次修改区间([ql,qr])。
- ([ql,qr])包含(l-1,r),那么有(displaystyle 2 over qr-ql+1)概率使(l-1)或(r)的值改变。
- ([ql,qr])不包含(l-1,r),不会发生变化。
- ([ql,qr])包含(l-1,r)中一个,那么有(displaystyle 1 over qr-ql+1)使(l-1)或(r)的值改变。
把每次修改记下来,就可以写出(o(n^2))的暴力了。
代码见namespace fc
正解
显然可以只记相等的概率。
可以发现,对于一次询问,改变前面修改的顺序并不会改变该询问的答案。
也就是说它满足交换律。
对于(l=1)的情况,显然可以一棵线段树维护。
对于(l!=1)的情况,把([l,r ])区间当做一个二维的点((l,r)),那么每一次修改都会对二维区间产生贡献。
具体的:对于暴力分的第1类,即(x in [ql,qr],y in [ql,qr])的点,对于暴力的第3类,即(x in [1,ql -1],y in [ql,qr]),(x in [ql,qr],y in [qr+1,n])。
只需二维线段树区间标记即可,为了方便,标记表示的是 对应的二维区间的点 发生变化的概率。
#include<bits/stdc++.h>
#define rep(q,a,b) for(int q=a,q##_end_=b;q<=q##_end_;++q)
#define dep(q,a,b) for(int q=a,q##_end_=b;q>=q##_end_;--q)
#define mem(a,b) memset(a,b,sizeof a )
#define debug(a) cerr<<#a<<' '<<a<<"___"<<endl
using namespace std;
template<typename T>
void in(T &r) {
static char c;
r=0;
while(c=getchar(),!isdigit(c));
do r=(r<<1)+(r<<3)+(c^48);
while(c=getchar(),isdigit(c));
}
bool cur1;
int n,m;
const int mn=100005;
const int mod=998244353;
int inv[mn];
namespace fc{
int l[3005],r[3005];
void solve(){
int ty,a,b;
int ct=0;
while(m--){
in(ty),in(a),in(b);
if(ty==1)++ct,l[ct]=a,r[ct]=b;
else{
--a;
int wi=1,wo=0;
if(!a){
rep(q,1,ct){
int len=r[q]-l[q]+1;
if(l[q]<=b&&b<=r[q]){
int mid1=wi,mid2=wo;
wi=(1LL*mid2*(1-inv[len])+1LL*mid1*inv[len])%mod;
wo=(1LL*mid1*(1-inv[len])+1LL*mid2*inv[len])%mod;
}else swap(wi,wo);
}
}else{
rep(q,1,ct){
int len=r[q]-l[q]+1;
int mid1=wi,mid2=wo;
if(l[q]<=a&&b<=r[q]){//[l[q],r[q]]->[l[q],r[q]]
wi=(1LL*mid1*(1-2*inv[len])+1LL*mid2*2*inv[len])%mod;
wo=(1LL*mid2*(1-2*inv[len])+1LL*mid1*2*inv[len])%mod;
}else if(l[q]<=b&&b<=r[q]||l[q]<=a&&a<=r[q]){
//[1,l[q]-1]->[l[q],r[q]]
//[l[q],r[q]]->[r[q]+1,n]
wi=(1LL*mid1*(1-inv[len])+1LL*mid2*inv[len])%mod;
wo=(1LL*mid2*(1-inv[len])+1LL*mid1*inv[len])%mod;
}
}
}
printf("%d
",(wi+mod)%mod);
}
}
}
}
namespace something_just_for_fun{
struct two_dimensional_segment_tree{
int tot,lson[mn*400],rson[mn*400],addv[mn*400],rt[mn<<2];
two_dimensional_segment_tree(){
tot=0;
}
int y_1,y_2,y_3,y_4,ad_v;
void se_add(int &o,int l,int r){
if(!o)o=++tot;
if(y_3<=l&&r<=y_4){
addv[o]=(1LL*(1-addv[o])*ad_v+1LL*addv[o]*(1-ad_v))%mod;
}else{
int mid=l+r>>1;
if(y_3<=mid)se_add(lson[o],l,mid);
if(y_4>mid)se_add(rson[o],mid+1,r);
}
}
void fi_add(int o,int l,int r){
if(y_1<=l&&r<=y_2)se_add(rt[o],1,n);
else{
int mid=l+r>>1;
if(y_1<=mid)fi_add(o<<1,l,mid);
if(y_2>mid)fi_add(o<<1|1,mid+1,r);
}
}
void add(int l,int r,int l1,int r1,int v){
if(l>r||l1>r1)return;
y_1=l,y_2=r,y_3=l1,y_4=r1,ad_v=v;
fi_add(1,1,n);
}
int v;
void se_ask(int &o,int l,int r){
if(!o)return;
v=(1LL*(1-addv[o])*v+1LL*addv[o]*(1-v))%mod;
int mid=l+r>>1;
if(y_2<=mid)se_ask(lson[o],l,mid);
else se_ask(rson[o],mid+1,r);
}
void fi_ask(int o,int l,int r){
se_ask(rt[o],1,n);
if(l==r)return;
else{
int mid=l+r>>1;
if(y_1<=mid)fi_ask(o<<1,l,mid);
else fi_ask(o<<1|1,mid+1,r);
}
}
int ask(int l,int r){
y_1=l,y_2=r,v=1;
fi_ask(1,1,n);
return v;
}
}an;
struct segment_tree{
int addv[mn<<2];
int y_1,y_2,ad_v;
void fi_add(int o,int l,int r){
if(y_1<=l&&r<=y_2)addv[o]=(1LL*(1-addv[o])*ad_v+1LL*addv[o]*(1-ad_v))%mod;
else{
int mid=l+r>>1;
if(y_1<=mid)fi_add(o<<1,l,mid);
if(y_2>mid)fi_add(o<<1|1,mid+1,r);
}
}
void add(int l,int r,int v){
if(l>r)return;
y_1=l,y_2=r,ad_v=v;
fi_add(1,1,n);
}
int v;
void fi_ask(int o,int l,int r){
v=(1LL*(1-addv[o])*v+1LL*addv[o]*(1-v))%mod;
if(l==r)return;
else{
int mid=l+r>>1;
if(y_1<=mid)fi_ask(o<<1,l,mid);
else fi_ask(o<<1|1,mid+1,r);
}
}
int ask(int x){
y_1=x,v=1;
fi_ask(1,1,n);
return v;
}
}at;
int l[mn],r[mn];
void solve(){
int ty,a,b;
while(m--){
in(ty),in(a),in(b);
if(ty==1){
at.add(a,b,1-inv[b-a+1]),at.add(1,a-1,1),at.add(b+1,n,1);
an.add(a,b,a,b,2*inv[b-a+1]%mod),an.add(1,a-1,a,b,inv[b-a+1]),an.add(a,b,b+1,n,inv[b-a+1]);
}
else --a,printf("%d
",((!a?at.ask(b):an.ask(a,b))+mod)%mod);
}
}
}
bool cur2;
int main(){
// cerr<<(&cur2-&cur1)/1024.0/1024<<endl;
freopen("bit.in","r",stdin);
freopen("bit.out","w",stdout);
in(n),in(m);
inv[0]=inv[1]=1;
rep(q,2,n)inv[q]=1LL*(mod-mod/q)*inv[mod%q]%mod;
something_just_for_fun::solve();
return 0;
}